牛客 打印二叉树边界节点
题目大意
略。
分析
比较繁琐的 Coding 题,考验基本功。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (int)(n); ++i) 6 #define For(i,s,t) for (int i = (int)(s); i <= (int)(t); ++i) 7 #define rFor(i,t,s) for (int i = (int)(t); i >= (int)(s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 24 25 #define ms0(a) memset(a,0,sizeof(a)) 26 #define msI(a) memset(a,0x3f,sizeof(a)) 27 #define msM(a) memset(a,-1,sizeof(a)) 28 29 #define MP make_pair 30 #define PB push_back 31 #define ft first 32 #define sd second 33 34 template<typename T1, typename T2> 35 istream &operator>>(istream &in, pair<T1, T2> &p) { 36 in >> p.first >> p.second; 37 return in; 38 } 39 40 template<typename T> 41 istream &operator>>(istream &in, vector<T> &v) { 42 for (auto &x: v) 43 in >> x; 44 return in; 45 } 46 47 template<typename T> 48 ostream &operator<<(ostream &out, vector<T> &v) { 49 Rep(i, v.size()) out << v[i] << " \n"[i == v.size() - 1]; 50 return out; 51 } 52 53 template<typename T1, typename T2> 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 55 out << "[" << p.first << ", " << p.second << "]" << "\n"; 56 return out; 57 } 58 59 inline int gc(){ 60 static const int BUF = 1e7; 61 static char buf[BUF], *bg = buf + BUF, *ed = bg; 62 63 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 64 return *bg++; 65 } 66 67 inline int ri(){ 68 int x = 0, f = 1, c = gc(); 69 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 70 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 71 return x*f; 72 } 73 74 template<class T> 75 inline string toString(T x) { 76 ostringstream sout; 77 sout << x; 78 return sout.str(); 79 } 80 81 inline int toInt(string s) { 82 int v; 83 istringstream sin(s); 84 sin >> v; 85 return v; 86 } 87 88 //min <= aim <= max 89 template<typename T> 90 inline bool BETWEEN(const T aim, const T min, const T max) { 91 return min <= aim && aim <= max; 92 } 93 94 typedef long long LL; 95 typedef unsigned long long uLL; 96 typedef vector< int > VI; 97 typedef vector< bool > VB; 98 typedef vector< char > VC; 99 typedef vector< double > VD; 100 typedef vector< string > VS; 101 typedef vector< LL > VL; 102 typedef vector< VI > VVI; 103 typedef vector< VB > VVB; 104 typedef vector< VS > VVS; 105 typedef vector< VL > VVL; 106 typedef vector< VVI > VVVI; 107 typedef vector< VVL > VVVL; 108 typedef pair< int, int > PII; 109 typedef pair< LL, LL > PLL; 110 typedef pair< int, string > PIS; 111 typedef pair< string, int > PSI; 112 typedef pair< string, string > PSS; 113 typedef pair< double, double > PDD; 114 typedef vector< PII > VPII; 115 typedef vector< PLL > VPLL; 116 typedef vector< VPII > VVPII; 117 typedef vector< VPLL > VVPLL; 118 typedef vector< VS > VVS; 119 typedef map< int, int > MII; 120 typedef unordered_map< int, int > uMII; 121 typedef map< LL, LL > MLL; 122 typedef map< string, int > MSI; 123 typedef map< int, string > MIS; 124 typedef set< int > SI; 125 typedef stack< int > SKI; 126 typedef deque< int > DQI; 127 typedef queue< int > QI; 128 typedef priority_queue< int > PQIMax; 129 typedef priority_queue< int, VI, greater< int > > PQIMin; 130 const double EPS = 1e-8; 131 const LL inf = 0x7fffffff; 132 const LL infLL = 0x7fffffffffffffffLL; 133 const LL mod = 1e9 + 7; 134 const int maxN = 1e6 + 7; 135 const LL ONE = 1; 136 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 137 const LL oddBits = 0x5555555555555555; 138 139 struct TreeNode { 140 int lch = 0, rch = 0; 141 }; 142 143 int N, root; 144 TreeNode tree[maxN]; 145 146 // PS:严格空间复杂度O(h)实在不符合我的美学 147 void printOne() { 148 QI Q; 149 int cnt = 1; 150 VI l, mid, r; 151 152 Q.push(root); 153 l.PB(root); 154 // 利用BFS求左右边界节点,这里也不满足空间复杂度O(h)的要求 155 while(!Q.empty()) { 156 int rt = Q.front(); Q.pop(); 157 --cnt; 158 159 if(tree[rt].lch) Q.push(tree[rt].lch); 160 if(tree[rt].rch) Q.push(tree[rt].rch); 161 162 if(cnt == 0) { 163 r.PB(rt); 164 cnt = Q.size(); 165 if(!Q.empty()) l.PB(Q.front()); 166 } 167 } 168 169 // 这里用栈代替递归调用,实际上做不到严格空间复杂度O(h),因为递归调用也要耗空间 170 stack< PII > sk; 171 sk.push(MP(root, 0)); // 第二维是高度 172 // 先序遍历取出所有非左右边界的叶子结点 173 while(!sk.empty()) { 174 int rt = sk.top().ft, h = sk.top().sd; sk.pop(); 175 176 if(!tree[rt].rch && !tree[rt].lch && l[h] != rt && r[h] != rt) mid.PB(rt); 177 178 if(tree[rt].rch) sk.push(MP(tree[rt].rch, h + 1)); 179 if(tree[rt].lch) sk.push(MP(tree[rt].lch, h + 1)); 180 } 181 182 Rep(i, l.size()) { 183 if(i) printf(" "); 184 printf("%d", l[i]); 185 } 186 Rep(i, mid.size()) printf(" %d", mid[i]); 187 rFor(i, r.size() - 1, 1) if(r[i] != l[i]) printf(" %d", r[i]); 188 printf("\n"); 189 } 190 191 void printTwoLeft(int rt) { 192 bool flag = true; // 标记左边界是否打印完了 193 SKI sk; 194 sk.push(rt); 195 // 先序遍历 196 while(!sk.empty()) { 197 int p = sk.top(); sk.pop(); 198 199 if(flag || !tree[p].rch && !tree[p].lch) printf(" %d", p); 200 201 if(tree[p].rch) sk.push(tree[p].rch); 202 if(tree[p].lch) sk.push(tree[p].lch); 203 204 if(!tree[p].rch && !tree[p].lch) flag = false; 205 } 206 } 207 208 void printTwoRight(int rt) { 209 bool flag = true; // 标记右边界是否打印完了 210 SKI sk; 211 VI ret; 212 sk.push(rt); 213 // 反先序遍历(中右左) 214 while(!sk.empty()) { 215 int p = sk.top(); sk.pop(); 216 217 if(flag || !tree[p].rch && !tree[p].lch) ret.PB(p); 218 219 if(tree[p].lch) sk.push(tree[p].lch); 220 if(tree[p].rch) sk.push(tree[p].rch); 221 222 if(!tree[p].rch && !tree[p].lch) flag = false; 223 } 224 225 rFor(i, ret.size() - 1, 0) printf(" %d", ret[i]); 226 } 227 228 void printTwo() { 229 int rt = root; 230 231 // 找到第一个有两个孩子的节点rt,并沿途打印节点 232 while(rt && !(tree[rt].rch && tree[rt].lch)) { 233 if(rt != root) printf(" "); 234 printf("%d", rt); 235 if(tree[rt].rch == 0 && tree[rt].lch == 0) break; // 不存在拥有两个孩子的节点,直接退出 236 if(tree[rt].rch) rt = tree[rt].rch; 237 if(tree[rt].lch) rt = tree[rt].lch; 238 } 239 if(rt && tree[rt].rch && tree[rt].rch) { 240 if(rt != root) printf(" "); 241 printf("%d", rt); 242 } 243 else { 244 printf("\n"); 245 return; 246 } 247 248 printTwoLeft(tree[rt].lch); 249 printTwoRight(tree[rt].rch); 250 printf("\n"); 251 } 252 253 int main(){ 254 //freopen("MyOutput.txt","w",stdout); 255 //freopen("input.txt","r",stdin); 256 //INIT(); 257 scanf("%d%d", &N, &root); 258 Rep(i, N) { 259 int fa, lch, rch; 260 scanf("%d%d%d", &fa, &lch, &rch); 261 262 tree[fa].lch = lch; 263 tree[fa].rch = rch; 264 } 265 266 printOne(); 267 printTwo(); 268 return 0; 269 }