HDU 1317 XYZZY

题目链接:https://vjudge.net/problem/HDU-1317

题目大意

  有 N 个房间,每个房间都有一定能量(有正有负),其中某些房间单向可达,你现在开局自带 100 能量,想从 1 号房间走到 N 号房间,并且要保证中途剩余能量恒为正,问是否可能?

分析

  我一开始不知道题目中“quits in frustration”是什么意思,后来我才知道,这句话的意思是不一定有路能到达 N。(说清楚一点会死么。。。)
  本来就是个判断有没有正环的题目,现在还要判断正环上的点能否到达 N,不能的话这个正环就没什么卵用。
  可以先用 Floyd 先求任意两点的可达性,然后用 SPFA 判断有无能到达 N 的正环,没有再判断 N 上的值是否为正。
  PS:此题数据并不强,我的第一版代码 AC 了,但后来我自己弄了个数据,本地 WA 了,最终搞了第二版代码,本地和 OJ 都 AC 了。

代码如下

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3  
  4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
  5 #define Rep(i,n) for (int i = 0; i < (int)(n); ++i)
  6 #define For(i,s,t) for (int i = (int)(s); i <= (int)(t); ++i)
  7 #define rFor(i,t,s) for (int i = (int)(t); i >= (int)(s); --i)
  8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
  9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12  
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15  
 16 #define LOWBIT(x) ((x)&(-x))
 17  
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 
 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
 24  
 25 #define ms0(a) memset(a,0,sizeof(a))
 26 #define msI(a) memset(a,0x3f,sizeof(a))
 27 #define msM(a) memset(a,-1,sizeof(a))
 28 
 29 #define MP make_pair
 30 #define PB push_back
 31 #define ft first
 32 #define sd second
 33  
 34 template<typename T1, typename T2>
 35 istream &operator>>(istream &in, pair<T1, T2> &p) {
 36     in >> p.first >> p.second;
 37     return in;
 38 }
 39  
 40 template<typename T>
 41 istream &operator>>(istream &in, vector<T> &v) {
 42     for (auto &x: v)
 43         in >> x;
 44     return in;
 45 }
 46 
 47 template<typename T>
 48 ostream &operator<<(ostream &out, vector<T> &v) {
 49     Rep(i, v.size()) out << v[i] << " \n"[i == v.size()];
 50     return out;
 51 }
 52  
 53 template<typename T1, typename T2>
 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
 55     out << "[" << p.first << ", " << p.second << "]" << "\n";
 56     return out;
 57 }
 58 
 59 inline int gc(){
 60     static const int BUF = 1e7;
 61     static char buf[BUF], *bg = buf + BUF, *ed = bg;
 62     
 63     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
 64     return *bg++;
 65 } 
 66 
 67 inline int ri(){
 68     int x = 0, f = 1, c = gc();
 69     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
 70     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
 71     return x*f;
 72 }
 73 
 74 template<class T>
 75 inline string toString(T x) {
 76     ostringstream sout;
 77     sout << x;
 78     return sout.str();
 79 }
 80 
 81 inline int toInt(string s) {
 82     int v;
 83     istringstream sin(s);
 84     sin >> v;
 85     return v;
 86 }
 87 
 88 //min <= aim <= max
 89 template<typename T>
 90 inline bool BETWEEN(const T aim, const T min, const T max) {
 91     return min <= aim && aim <= max;
 92 }
 93  
 94 typedef long long LL;
 95 typedef unsigned long long uLL;
 96 typedef vector< int > VI;
 97 typedef vector< bool > VB;
 98 typedef vector< char > VC;
 99 typedef vector< double > VD;
100 typedef vector< string > VS;
101 typedef vector< LL > VL;
102 typedef vector< VI > VVI;
103 typedef vector< VB > VVB;
104 typedef vector< VS > VVS;
105 typedef vector< VL > VVL;
106 typedef vector< VVI > VVVI;
107 typedef vector< VVL > VVVL;
108 typedef pair< int, int > PII;
109 typedef pair< LL, LL > PLL;
110 typedef pair< int, string > PIS;
111 typedef pair< string, int > PSI;
112 typedef pair< string, string > PSS;
113 typedef pair< double, double > PDD;
114 typedef vector< PII > VPII;
115 typedef vector< PLL > VPLL;
116 typedef vector< VPII > VVPII;
117 typedef vector< VPLL > VVPLL;
118 typedef vector< VS > VVS;
119 typedef map< int, int > MII;
120 typedef unordered_map< int, int > uMII;
121 typedef map< LL, LL > MLL;
122 typedef map< string, int > MSI;
123 typedef map< int, string > MIS;
124 typedef set< int > SI;
125 typedef stack< int > SKI;
126 typedef queue< int > QI;
127 typedef priority_queue< int > PQIMax;
128 typedef priority_queue< int, VI, greater< int > > PQIMin;
129 const double EPS = 1e-8;
130 const LL inf = 0x7fffffff;
131 const LL infLL = 0x7fffffffffffffffLL;
132 const LL mod = 1e9 + 7;
133 const int maxN = 1e2 + 7;
134 const LL ONE = 1;
135 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
136 const LL oddBits = 0x5555555555555555;
137 
138 struct Edge{
139     int from, to;
140 };
141 
142 istream& operator>> (istream& in, Edge &x) {
143     in >> x.from >> x.to;
144     return in;
145 }
146 
147 struct Vertex{
148     int value, w;
149     VI next;
150     
151     void clear() {
152         value = 0;
153         next.clear();
154     }
155 };
156 
157 int T, N, M;
158 Vertex V[maxN];
159 vector< Edge > E;
160 bool reach[maxN][maxN];
161 
162 void addEdge(Edge &x) {
163     V[x.from].next.PB(E.size());
164     E.PB(x);
165 }
166 
167 void init() {
168     For(i, 1, N) V[i].clear();
169     E.clear();
170     ms0(reach);
171 }
172 
173 bool vis[maxN]; // 标记是否在队列里 
174 int cnt[maxN]; // 记录一个顶点的入队次数 
175 bool SPFA(int S) {
176     QI Q;
177     
178     ms0(vis);
179     ms0(cnt);
180     Q.push(S);
181     vis[S] = 1;
182     ++cnt[S];
183     
184     while(!Q.empty()) {
185         int tmp = Q.front(); Q.pop();
186         vis[tmp] = 0;
187         
188         Rep(i, V[tmp].next.size()) {
189             Edge &e = E[V[tmp].next[i]];
190             if(!reach[e.to][N]) continue; // 只松弛能到达 N 的点 
191             
192             if(V[e.to].value < V[e.from].value + V[e.to].w) { // 松弛 
193                 V[e.to].value = V[e.from].value + V[e.to].w; 
194                 if(!vis[e.to]) { // 一旦一个节点被更新,它就要入队,以保证它的后继节点被更新 
195                     if(++cnt[e.to] >= N) return true; // 一旦一个节点被更新 N 次以上,就说明有正环并且可以达到  
196                     Q.push(e.to);
197                     vis[e.to] = 1; 
198                 }
199             }
200         }
201     }
202     return V[N].value > 0;
203 }
204 
205 void Floyd() {
206     For(k, 1, N) {
207         reach[k][k] = true;
208         For(i, 1, N) {
209             if(!reach[i][k]) continue;
210             For(j, 1, N) {
211                 if(!reach[k][j]) continue;
212                 reach[i][j] = true;
213             }
214         }
215     }
216 }
217 
218 int main(){
219     //freopen("MyOutput.txt","w",stdout);
220     //freopen("input.txt","r",stdin);
221     INIT();
222     while(cin >> N && N != -1) {
223         init();
224         For(i, 1, N) {
225             int m;
226             Edge t;
227             t.from = i;
228             
229             cin >> V[i].w >> m;
230             For(i, 1, m) {
231                 cin >> t.to;
232                 addEdge(t);
233                 reach[t.from][t.to] = true;
234             }
235         }
236         
237         Floyd();
238         
239         V[1].value = 100;
240         if(reach[1][N] && SPFA(1)) cout << "winnable\n";
241         else cout << "hopeless\n";
242     }
243     return 0;
244 }
245 
246 /*
247 7
248 0 1 2
249 -80 2 3 6
250 -10 1 4
251 20 1 5
252 10 1 3
253 -100 1 7
254 0 0
255 hopeless
256 
257 7
258 0 1 2
259 -80 2 3 6
260 -10 1 4
261 20 1 5
262 10 1 3
263 -10 1 7
264 0 0
265 winnable
266 
267 9
268 0 1 2
269 -80 2 3 6
270 -10 1 4
271 20 1 5
272 10 1 3
273 -10 2 7 9
274 10 1 8
275 10 1 6
276 0 0
277 winnable
278 */
View Code

 

posted @ 2019-08-08 19:53  梦樱羽  阅读(190)  评论(0编辑  收藏  举报
Live2D