2019 牛客多校第一场 B Integration
题目链接:https://ac.nowcoder.com/acm/contest/881/B
题目大意
给定 n 个不同的正整数 ai,求$\frac{1}{\pi}\int_{0}^{\infty} \frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx$模 109 + 7。(可以证明这个积分一定是有理数)
分析
$$\begin{align*}
&令c_i = \frac{1}{\prod_{j \ne i} (a_j^2 - a_i^2)} \\
&则\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)} = \sum\limits_{i=1}^{n} \frac{c_i}{a_i^2+x^2} \\
&而\int_{0}^{\infty} \frac{c_i}{a_i^2+x^2}dx = \frac{c_i}{2a_i}\pi \\
&于是\frac{1}{\pi}\int_{0}^{\infty} \frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx = \sum\limits_{i=1}^{n} \frac{c_i}{2a_i}
\end{align*}$$
补:关于裂项,也就是$c_i$怎得得出来,以两项为例。
以 $x$ 代替 $x^2$,$-y_i$ 代替 $a_i^2$。
则$\frac{1}{(x - y_1)(x - y_2)} = \frac{1}{y_1 - y_2} * (\frac{1}{x - y_1} - \frac{1}{x - y_2}) = \frac{1}{y_1 - y_2} * \frac{1}{x - y_1} + \frac{1}{y_2 - y_1} * \frac{1}{x - y_2}$。
三项以至于更多项同理,可以找出规律。
熟练以后建议当作公式来记住。
你所以为的顿悟,常常只是别人的基本功。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 24 25 #define ms0(a) memset(a,0,sizeof(a)) 26 #define msI(a) memset(a,inf,sizeof(a)) 27 #define msM(a) memset(a,-1,sizeof(a)) 28 29 #define MP make_pair 30 #define PB push_back 31 #define ft first 32 #define sd second 33 34 template<typename T1, typename T2> 35 istream &operator>>(istream &in, pair<T1, T2> &p) { 36 in >> p.first >> p.second; 37 return in; 38 } 39 40 template<typename T> 41 istream &operator>>(istream &in, vector<T> &v) { 42 for (auto &x: v) 43 in >> x; 44 return in; 45 } 46 47 template<typename T> 48 ostream &operator<<(ostream &out, vector<T> &v) { 49 Rep(i, v.size()) out << v[i] << " \n"[i == v.size()]; 50 return out; 51 } 52 53 template<typename T1, typename T2> 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 55 out << "[" << p.first << ", " << p.second << "]" << "\n"; 56 return out; 57 } 58 59 inline int gc(){ 60 static const int BUF = 1e7; 61 static char buf[BUF], *bg = buf + BUF, *ed = bg; 62 63 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 64 return *bg++; 65 } 66 67 inline int ri(){ 68 int x = 0, f = 1, c = gc(); 69 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 70 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 71 return x*f; 72 } 73 74 template<class T> 75 inline string toString(T x) { 76 ostringstream sout; 77 sout << x; 78 return sout.str(); 79 } 80 81 inline int toInt(string s) { 82 int v; 83 istringstream sin(s); 84 sin >> v; 85 return v; 86 } 87 88 //min <= aim <= max 89 template<typename T> 90 inline bool BETWEEN(const T aim, const T min, const T max) { 91 return min <= aim && aim <= max; 92 } 93 94 typedef long long LL; 95 typedef unsigned long long uLL; 96 typedef pair< double, double > PDD; 97 typedef pair< int, int > PII; 98 typedef pair< int, PII > PIPII; 99 typedef pair< string, int > PSI; 100 typedef pair< int, PSI > PIPSI; 101 typedef set< int > SI; 102 typedef set< PII > SPII; 103 typedef vector< int > VI; 104 typedef vector< double > VD; 105 typedef vector< VI > VVI; 106 typedef vector< SI > VSI; 107 typedef vector< PII > VPII; 108 typedef map< int, int > MII; 109 typedef map< int, string > MIS; 110 typedef map< int, PII > MIPII; 111 typedef map< PII, int > MPIII; 112 typedef map< string, int > MSI; 113 typedef map< string, string > MSS; 114 typedef map< PII, string > MPIIS; 115 typedef map< PII, PII > MPIIPII; 116 typedef multimap< int, int > MMII; 117 typedef multimap< string, int > MMSI; 118 //typedef unordered_map< int, int > uMII; 119 typedef pair< LL, LL > PLL; 120 typedef vector< LL > VL; 121 typedef vector< VL > VVL; 122 typedef priority_queue< int > PQIMax; 123 typedef priority_queue< int, VI, greater< int > > PQIMin; 124 const double EPS = 1e-8; 125 const LL inf = 0x7fffffff; 126 const LL infLL = 0x7fffffffffffffffLL; 127 const LL mod = 1e9 + 7; 128 const int maxN = 1e3 + 7; 129 const LL ONE = 1; 130 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 131 const LL oddBits = 0x5555555555555555; 132 133 //ax + by = gcd(a, b) = d 134 // 扩展欧几里德算法 135 /** 136 * a*x + b*y = 1 137 * 如果ab互质,有解 138 * x就是a关于b的逆元 139 * y就是b关于a的逆元 140 * 141 * 证明: 142 * a*x % b + b*y % b = 1 % b 143 * a*x % b = 1 % b 144 * a*x = 1 (mod b) 145 */ 146 inline void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){ 147 if (!b) {d = a, x = 1, y = 0;} 148 else{ 149 ex_gcd(b, a % b, y, x, d); 150 y -= x * (a / b); 151 } 152 } 153 154 // 求a关于p的逆元,如果不存在,返回-1 155 // a与p互质,逆元才存在 156 inline LL inv_mod(LL a, LL p = mod){ 157 LL d, x, y; 158 ex_gcd(a, p, x, y, d); 159 return d == 1 ? (x % p + p) % p : -1; 160 } 161 162 LL add_mod(LL a, LL b) { 163 return (a + b) % mod; 164 } 165 166 LL mul_mod(LL a, LL b) { 167 return (a * b) % mod; 168 } 169 170 LL sub_mod(LL a, LL b) { 171 return (a - b + mod) % mod; 172 } 173 174 LL n, a[maxN], c[maxN], ans; 175 176 int main(){ 177 //freopen("MyOutput.txt","w",stdout); 178 //freopen("input.txt","r",stdin); 179 //INIT(); 180 while(~scanf("%lld", &n)) { 181 ans = 0; 182 For(i, 1, n) scanf("%lld", &a[i]); 183 184 For(i, 1, n) { 185 c[i] = 1; 186 For(j, 1, n) { 187 if(i == j) continue; 188 c[i] = mul_mod(c[i], sub_mod(mul_mod(a[j], a[j]), mul_mod(a[i], a[i]))); 189 } 190 ans = add_mod(ans, inv_mod(mul_mod(a[i], 2 * c[i]))); 191 } 192 193 printf("%lld\n", ans); 194 } 195 return 0; 196 }