2019 牛客多校第一场 B Integration

题目链接:https://ac.nowcoder.com/acm/contest/881/B

题目大意

  给定 n 个不同的正整数 ai,求$\frac{1}{\pi}\int_{0}^{\infty} \frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx$模 109 + 7。(可以证明这个积分一定是有理数)

分析

$$\begin{align*}
&令c_i = \frac{1}{\prod_{j \ne i} (a_j^2 - a_i^2)} \\
&则\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)} = \sum\limits_{i=1}^{n} \frac{c_i}{a_i^2+x^2} \\
&而\int_{0}^{\infty} \frac{c_i}{a_i^2+x^2}dx = \frac{c_i}{2a_i}\pi \\
&于是\frac{1}{\pi}\int_{0}^{\infty} \frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx = \sum\limits_{i=1}^{n} \frac{c_i}{2a_i}
\end{align*}$$

  补:关于裂项,也就是$c_i$怎得得出来,以两项为例。

  以 $x$ 代替 $x^2$,$-y_i$ 代替 $a_i^2$。

  则$\frac{1}{(x - y_1)(x - y_2)} = \frac{1}{y_1 - y_2} * (\frac{1}{x - y_1} - \frac{1}{x - y_2}) = \frac{1}{y_1 - y_2} * \frac{1}{x - y_1} + \frac{1}{y_2 - y_1} * \frac{1}{x - y_2}$。

  三项以至于更多项同理,可以找出规律。

  熟练以后建议当作公式来记住。

  你所以为的顿悟,常常只是别人的基本功。

代码如下

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3  
  4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
  5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
  6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
  7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
  8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
  9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12  
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15  
 16 #define LOWBIT(x) ((x)&(-x))
 17  
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c 
 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
 24  
 25 #define ms0(a) memset(a,0,sizeof(a))
 26 #define msI(a) memset(a,inf,sizeof(a))
 27 #define msM(a) memset(a,-1,sizeof(a))
 28 
 29 #define MP make_pair
 30 #define PB push_back
 31 #define ft first
 32 #define sd second
 33  
 34 template<typename T1, typename T2>
 35 istream &operator>>(istream &in, pair<T1, T2> &p) {
 36     in >> p.first >> p.second;
 37     return in;
 38 }
 39  
 40 template<typename T>
 41 istream &operator>>(istream &in, vector<T> &v) {
 42     for (auto &x: v)
 43         in >> x;
 44     return in;
 45 }
 46 
 47 template<typename T>
 48 ostream &operator<<(ostream &out, vector<T> &v) {
 49     Rep(i, v.size()) out << v[i] << " \n"[i == v.size()];
 50     return out;
 51 }
 52 
 53 template<typename T1, typename T2>
 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
 55     out << "[" << p.first << ", " << p.second << "]" << "\n";
 56     return out;
 57 }
 58 
 59 inline int gc(){
 60     static const int BUF = 1e7;
 61     static char buf[BUF], *bg = buf + BUF, *ed = bg;
 62     
 63     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
 64     return *bg++;
 65 } 
 66 
 67 inline int ri(){
 68     int x = 0, f = 1, c = gc();
 69     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
 70     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
 71     return x*f;
 72 }
 73 
 74 template<class T>
 75 inline string toString(T x) {
 76     ostringstream sout;
 77     sout << x;
 78     return sout.str();
 79 }
 80 
 81 inline int toInt(string s) {
 82     int v;
 83     istringstream sin(s);
 84     sin >> v;
 85     return v;
 86 }
 87 
 88 //min <= aim <= max
 89 template<typename T>
 90 inline bool BETWEEN(const T aim, const T min, const T max) {
 91     return min <= aim && aim <= max;
 92 }
 93  
 94 typedef long long LL;
 95 typedef unsigned long long uLL;
 96 typedef pair< double, double > PDD;
 97 typedef pair< int, int > PII;
 98 typedef pair< int, PII > PIPII;
 99 typedef pair< string, int > PSI;
100 typedef pair< int, PSI > PIPSI;
101 typedef set< int > SI;
102 typedef set< PII > SPII;
103 typedef vector< int > VI;
104 typedef vector< double > VD;
105 typedef vector< VI > VVI;
106 typedef vector< SI > VSI;
107 typedef vector< PII > VPII;
108 typedef map< int, int > MII;
109 typedef map< int, string > MIS;
110 typedef map< int, PII > MIPII;
111 typedef map< PII, int > MPIII;
112 typedef map< string, int > MSI;
113 typedef map< string, string > MSS;
114 typedef map< PII, string > MPIIS;
115 typedef map< PII, PII > MPIIPII;
116 typedef multimap< int, int > MMII;
117 typedef multimap< string, int > MMSI;
118 //typedef unordered_map< int, int > uMII;
119 typedef pair< LL, LL > PLL;
120 typedef vector< LL > VL;
121 typedef vector< VL > VVL;
122 typedef priority_queue< int > PQIMax;
123 typedef priority_queue< int, VI, greater< int > > PQIMin;
124 const double EPS = 1e-8;
125 const LL inf = 0x7fffffff;
126 const LL infLL = 0x7fffffffffffffffLL;
127 const LL mod = 1e9 + 7;
128 const int maxN = 1e3 + 7;
129 const LL ONE = 1;
130 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
131 const LL oddBits = 0x5555555555555555;
132 
133 //ax + by = gcd(a, b) = d
134 // 扩展欧几里德算法
135 /**
136  *    a*x + b*y = 1
137  *    如果ab互质,有解
138  *    x就是a关于b的逆元
139  *    y就是b关于a的逆元
140  *     
141  *    证明: 
142  *        a*x % b + b*y % b = 1 % b
143  *        a*x % b = 1 % b
144  *        a*x = 1 (mod b)
145  */
146 inline void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
147     if (!b) {d = a, x = 1, y = 0;}
148     else{
149         ex_gcd(b, a % b, y, x, d);
150         y -= x * (a / b);
151     }
152 }
153 
154 // 求a关于p的逆元,如果不存在,返回-1 
155 // a与p互质,逆元才存在 
156 inline LL inv_mod(LL a, LL p = mod){
157     LL d, x, y;
158     ex_gcd(a, p, x, y, d);
159     return d == 1 ? (x % p + p) % p : -1;
160 }
161 
162 LL add_mod(LL a, LL b) {
163     return (a + b) % mod;
164 }
165 
166 LL mul_mod(LL a, LL b) {
167     return (a * b) % mod;
168 }
169 
170 LL sub_mod(LL a, LL b) {
171     return (a - b + mod) % mod;
172 }
173 
174 LL n, a[maxN], c[maxN], ans;
175 
176 int main(){
177     //freopen("MyOutput.txt","w",stdout);
178     //freopen("input.txt","r",stdin);
179     //INIT();
180     while(~scanf("%lld", &n)) {
181         ans = 0;
182         For(i, 1, n) scanf("%lld", &a[i]);
183         
184         For(i, 1, n) {
185             c[i] = 1;
186             For(j, 1, n) {
187                 if(i == j) continue;
188                 c[i] = mul_mod(c[i], sub_mod(mul_mod(a[j], a[j]), mul_mod(a[i], a[i])));
189             }
190             ans = add_mod(ans, inv_mod(mul_mod(a[i], 2 * c[i])));
191         }
192         
193         printf("%lld\n", ans);
194     }
195     return 0;
196 }
View Code

 

posted @ 2019-07-18 21:14  梦樱羽  阅读(432)  评论(3编辑  收藏  举报
Live2D