python爬虫获取国家统计局区划代码和城乡划分代码添加到数据库
import pymysql from bs4 import BeautifulSoup import requests import time from lxml import etree def get_area(year): year = str(year) url = "http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/" + year + "/index.html" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36' } response = requests.get(url, headers) response.encoding = 'UTF-8' page_text = response.text soup = BeautifulSoup(page_text, 'lxml') all_province = soup.find_all('tr', class_='provincetr') # 获取所有省份第一级的tr 有4个tr # all_province长度为4,其中第一组是从北京市到黑龙江省 """ 格式是这样的: <tr class="provincetr"><td><a href="11.html">北京市<br/></a></td> <td><a href="12.html">天津市<br/></a></td> <td><a href="13.html">河北省<br/></a></td> <td><a href="14.html">山西省<br/></a></td> <td><a href="15.html">内蒙古自治区<br/></a></td> <td><a href="21.html">辽宁省<br/></a></td><td> """ province_str = "" # 为了方便处理,把省份数据变成一个字符串 for i in range(len(all_province)): province_str = province_str + str(all_province[i]) # 开始分别获得a标签的href和text province = {} provinceList = [] province_soup = BeautifulSoup(province_str, 'lxml') province_href = province_soup.find_all("a") # 获取所有的a标签 for i in province_href: href_str = str(i) province_str = [] # 创建省份数据字典 province.update( {BeautifulSoup(href_str, 'lxml').find("a").text: BeautifulSoup(href_str, 'lxml').find("a")["href"]}) province_str.append({BeautifulSoup(href_str, 'lxml').find("a")["href"][:2] + '0000000000': BeautifulSoup(href_str, 'lxml').find("a").text}) provinceList.append(province_str) """ 数据provide字典 {'北京市': '11.html', '天津市': '12.html', '河北省': '13.html', '山西省': '14.html', '内蒙古自治区': '15.html', '辽宁省': '21.html', '吉林省': '22.html', '黑龙江省': '23.html', '上海市': '31.html', '江苏省': '32.html', '浙江省': '33.html', '安徽省': '34.html', '福建省': '35.html', '江西省': '36.html', '山东省': '37.html', '河南省': '41.html', '湖北省': '42.html', '湖南省': '43.html', '广东省': '44.html', '广西壮族自治区': '45.html', '海南省': '46.html', '重庆市': '50.html', '四川省': '51.html', '贵州省': '52.html', '云南省': '53.html', '西藏自治区': '54.html', '陕西省': '61.html', '甘肃省': '62.html', '青海省': '63.html', '宁夏回族自治区': '64.html', '新疆维吾尔自治区': '65.html'} """ # 根据身份数据字典继续爬取下一级的市级数据,创建市级数据字典 city = [] city_list = [] city_tr = [] temp_list = [] for item in province.items(): city_url = "http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/" + year + "/" + item[1] city_html = requests.get(city_url, headers) city_html.encoding = 'UTF-8' city_text = city_html.text city_tr.append(BeautifulSoup(city_text, 'lxml').find_all('tr', class_="citytr")) # 获得所有的市区tr city_tr列表长度是31 对应31个省或直辖市 # 下面开始建立市区的字典{"名字":"链接"} # 存放省名字列表 province_key = [] for key in province.keys(): province_key.append(key) num = 0 for i in city_tr: for j in i: city_str_list = [] etree_ = etree.HTML(str(j)) temp_list.append({ etree_.xpath('//tr/td[2]/a/text()')[0]: etree_.xpath('//tr/td[2]/a/@href')[0] }) city_str_list.append({ etree_.xpath('//tr/td[2]/a/@href')[0][3:7] + '00000000': etree_.xpath('//tr/td[2]/a/text()')[0] }) city_list.append(city_str_list) city.append({province_key[num]: temp_list}) num = num + 1 temp_list = [] """ city[11] {'安徽省': [{'合肥市': '34/3401.html'}, {'芜湖市': '34/3402.html'}, {'蚌埠市': '34/3403.html'}, {'淮南市': '34/3404.html'}, {'马鞍山市': '34/3405.html'}, {'淮北市': '34/3406.html'}, {'铜陵市': '34/3407.html'}, {'安庆市': '34/3408.html'}, {'黄山市': '34/3410.html'}, {'滁州市': '34/3411.html'}, {'阜阳市': '34/3412.html'}, {'宿州市': '34/3413.html'}, {'六安市': '34/3415.html'}, {'亳州市': '34/3416.html'}, {'池州市': '34/3417.html'}, {'宣城市': '34/3418.html'}]} """ # 搞定市级字典,下面开始最后一步,area area_list = [] temp_area_list = [] for item1 in city: for k1, v1 in item1.items(): province_name = k1 if (province_name in ["北京", "天津", "上海", "重庆"]): province_name = province_name + "市" if (province_name == "宁夏"): province_name = province_name + "回族自治区" if (province_name in ["西藏", "内蒙古"]): province_name = province_name + "自治区" if (province_name == "新疆"): province_name = province_name + "维吾尔自治区" if (province_name == "广西"): province_name = province_name + "壮族自治区" if (province_name == "黑龙江"): province_name = province_name + "省" if (len(province_name) == 2 and province_name not in ["西藏", "宁夏", "新疆", "广西", "北京", "天津", "上海", "重庆"]): province_name = province_name + "省" for item2 in v1: for k2, v2 in item2.items(): city_name = k2 area_url = "http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/" + year + "/" + v2 area_response = requests.get(area_url, headers) area_response.encoding = 'UTF-8' area_text = area_response.text area_soup = BeautifulSoup(area_text, 'lxml') area_tr = area_soup.find_all("tr", class_="countytr") for i in range(len(area_tr)): etree_area = etree.HTML(str(area_tr[i])) try: area_name = etree_area.xpath("//tr/td[2]/a/text()")[0] except: area_name = etree_area.xpath("//tr/td[2]/text()")[0] try: temp_area_list.append({ etree_area.xpath("//tr/td[1]/a/text()")[0]: area_name }) except: temp_area_list.append({ etree_area.xpath("//tr/td[1]/text()")[0]: area_name }) area_list.append(temp_area_list) temp_area_list = [] time.sleep(1) return provinceList + city_list + area_list def into_mysql(year): year = str(year) conn, cursor = get_mysql_conn() res = get_area(year) # print(res) try: for item in res: for k, v in item[0].items(): SQL = "insert into base_position (areaCode, name) values ('" + k + "','" + v + "')" cursor.execute(SQL) conn.commit() except: print("出现错误") conn, cursor.close() return None def query(sql, *args): """ 通用封装查询 :param sql: :param args: :return:返回查询结果 ((),()) """ conn, cursor = get_mysql_conn() cursor.execute(sql) res = cursor.fetchall() close_conn(conn, cursor) return res """ ------------------------------------------------------------------------------------ """ def get_mysql_conn(): """ :return: 连接,游标 """ # 创建连接 conn = pymysql.connect(host="", user="", password="", db="", charset="utf8") # 创建游标 cursor = conn.cursor() # 执行完毕返回的结果集默认以元组显示 return conn, cursor def close_conn(conn, cursor): if cursor: cursor.close() if conn: conn.close() if __name__ == '__main__': into_mysql('2022')
数据格式和逻辑可根据自己需求更改!
希望大佬看到有不对的地方,提出博主予以改正!