SVM-支持向量机(一)线性SVM分类
SVM-支持向量机
SVM(Support Vector Machine)-支持向量机,是一个功能非常强大的机器学习模型,可以处理线性与非线性的分类、回归,甚至是异常检测。它也是机器学习中非常热门的算法之一,特别适用于复杂的分类问题,并且数据集为小型、或中型的数据集。
这章我们会解释SVM里的核心概念、原理以及如何使用。
线性SVM分类
我们首先介绍一下SVM里最基本的原理。这里先看一张图:
这个是Iris数据集中的部分数据,可以看到这两个类别可以由一条直线很简单地直接分开(也可以说它们是线性可分)。左边的图上画出了3个可能的线性分类器的决策边界,其中绿色的最差,因为它无法将两个类别区分开来。另外两个看起来在训练集上表现良好,但是它们的决策边界与数据离的太近,所以如果有新数据引入的话,模型可能不会在新数据集上表现良好。再看看右边的图,实线代表的是一个SVM分类器的决策边界。这条线不仅将两个类别区分了开来,同时它还与(离此决策边界)最近的训练数据条目离的足够远。大家可以把SVM分类器看成一个:在两个类别之间,能有多宽就有多宽的大马路(这大马路就是右图的两条平行虚线)。这个称为 large margin classification(大间距分类)。
可以看到的是,在数据集中新增加的训练数据在“马路外侧”的话,则不会对决策边界产生任何影响,决策边界完全仅由“马路线”(右图虚线)上的数据决定。这些决策边界上的数据实例称为支持向量(support vectors),如右图中的两个圆。
需要注意的是,SVM对特征的取值范围非常敏感,如下图所示:在左边的图中,纵坐标的取值范围要远大于横坐标的取值范围,所以“最宽的马路”非常接近水平线。在做了特征缩放(feature scaling)后,例如使用 sk-learn的StrandardScaler,决策边界便看起来正常的多了(如下右图)。
软间隔分类(Soft Margin Classification)
如果我们严格地要求所有点都不在街道上并且被正确的分类,则这个称为硬间隔分类(hard margin classification)。硬间隔分类中有两个主要问题,第一,这个仅在线性可分的情况下适用;第二,它对异常点非常敏感。如下图所示,在左边的图中,如果存在这种异常点,则无法找到一个硬间隔(hard margin)。在右边的图中,如果存在这种类型的异常点,则最终的决策边界与我们之前的决策边界会有很大的差异,并且它的泛化性能可能并不太好。
为了避免这些情况,我们需要用一个更灵活的模型。所以我们的目标是:在“保持街道足够宽”与限制“间隔侵犯”(margin violations,意思是说数据条目最终在街道中间,或者甚至是在错误的一边)之间找到一个良好的平衡。这个称为软间隔分类(soft margin classification)。
在sk-learn SVM 类中,我们可以通过c参数控制这个平衡。较小的c值会使得街道更宽,但是间隔侵犯(margin violation)会更多。下图是两个软间隔SVM分类器在同一个非线性可分的数据集上的决策边界与间隔:
在左边的图中,使用的是一个较小的c值,可以看到间隔非常大,但是很多实例都在街道上。在右边的图中,使用的是一个较大的c值,所以分类器作用后的间隔侵犯(margin violation)较少,但是间隔也比较小。不过从整体来看,第一个分类器的泛化性能看起来会更好(在训练集上的预测仅有少部分预测错误,因为虽然有margin violation,但是实际上大部分的margin violation还是在它们所属的决策边界那边)。
这里需要提示大家的是:如果SVM出现了过拟合,则可以尝试通过降低c的值来进行正则化。
下面是一个示例代码,加载iris 数据集,对特征进行缩放,然后训练一个线性SVM模型(使用LinearSVC 类,指定C=1以及hinge 损失函数)用于检测Iris-Virginica flowers。模型的结果就是上图中C=1时的图:
import numpy as np from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC iris = datasets.load_iris() X = iris['data'][:, (2,3)] # petal length, petal width y = (iris['target'] == 2).astype(np.float64) # Iris-Virginica svm_clf = Pipeline([ ("scaler", StandardScaler()), ("linear_svc", LinearSVC(C=1, loss="hinge")), ])
svm_clf.fit(X, y)
然后使用训练好的模型做预测:
svm_clf.predict([[5.5, 1.7]]) >array([1.])
上面的代码也可以进行改写,也可以用SVC类,使用SVC(kernel="linear", C=1)。但是它的速度会慢很多,特别是训练集非常大时,所以并不推荐这种用法。另外的一种用法是使用SGDClassifier类,SGDClassifier(loss="hinge", alpha=1/(m*C))。这样会使用随机梯度下降训练一个线性SVM分类器。它的收敛不如LinearSVC类快,但是在处理非常大的数据集时(无法全部放入内存的规模)非常适用,或者是处理在线分类任务(online classification)时也比较适用。
LinearSVC类会对偏置项(bias term)正则,所以我们应该先通过减去训练集的平均数,让训练集集居中。如果使用了StandardScaler处理数据,则这个会自动完成。另一方面,必须要确保设置loss的超参数为hinge,因为它不是默认的值。最后,为了性能更好,我们应该设置dual超参数为False,除非数据集中的特征数比训练数据条目还要多。