Hive文件与记录格式

1. Hive文件与记录格式

Create table 有多种用法,例如STORED AS SEQUENCEFILE, ROW FORMAT DELIMITED, SERDE, INPUTFORMAT, OUTPUTFORMAT 这些语法。

某些语法是其他语法的快捷用法,例如:

语法 STORED AS SEQUENCEFILE 的替代方式是:指定INPUTFORMAT org.apache.hadoop.mapred.SequenceFileInputFormat,并指定 OUTPUTFORMAT org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

 

下面创建一些表,然后使用 DESCRIBE TABLE EXTENDED 语句查看下内部实际变化情况。首先创建一个简单表:

> create table text(x int);

hive> describe extended text;

OK

x                       int

 

Detailed Table Information     

Table(tableName:text, dbName:default, owner:hadoop, createTime:1559016716, lastAccessTime:0, retention:0,

sd:StorageDescriptor(

cols:[FieldSchema(name:x, type:int, comment:null)],

location:hdfs://ip-10-0-2-70.cn-north-1.compute.internal:8020/user/hive/warehouse/text,

inputFormat:org.apache.hadoop.mapred.TextInputFormat,

outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat,

compressed:false,

numBuckets:-1,

serdeInfo:SerDeInfo(

name:null,

serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,

parameters:{serialization.format=1}

),

bucketCols:[], sortCols:[], parameters:{},

skewedInfo:SkewedInfo(

skewedColNames:[], skewedColValues:[], skewedColValueLocationMaps:{}

),

storedAsSubDirectories:false),

partitionKeys:[], parameters:{totalSize=0, numRows=0, rawDataSize=0, COLUMN_STATS_ACCURATE={"BASIC_STATS":"true"}, numFiles=0, transient_lastDdlTime=1559016716},

viewOriginalText:null, viewExpandedText:null, tableType:MANAGED_TABLE, rewriteEnabled:false)

Time taken: 0.132 seconds, Fetched: 3 row(s)

 

然后再使用 STORED AS DEQUENCEFILE 语句创建一张表,用于对比:

> create table seq(x int) stored as sequencefile;

> describe extended seq;

OK

x                       int

 

Detailed Table Information     

Table(tableName:seq, dbName:default, owner:hadoop, createTime:1559017290, lastAccessTime:0, retention:0,

sd:StorageDescriptor(

cols:[FieldSchema(name:x, type:int, comment:null)],

location:hdfs://ip-10-0-2-70.cn-north-1.compute.internal:8020/user/hive/warehouse/seq,

inputFormat:org.apache.hadoop.mapred.SequenceFileInputFormat,

outputFormat:org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat,

compressed:false, numBuckets:-1,

serdeInfo:SerDeInfo(

name:null, serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,

parameters:{serialization.format=1}

),

bucketCols:[], sortCols:[], parameters:{},

skewedInfo:SkewedInfo(

skewedColNames:[], skewedColValues:[], skewedColValueLocationMaps:{}

),

storedAsSubDirectories:false

),

partitionKeys:[], parameters:{totalSize=0, numRows=0, rawDataSize=0, COLUMN_STATS_ACCURATE={"BASIC_STATS":"true"}, numFiles=0, transient_lastDdlTime=1559017290}, viewOriginalText:null, viewExpandedText:null, tableType:MANAGED_TABLE, rewriteEnabled:false)

 

两者差异很明显:STORED AS SEQUENCEFILE 与默认的InputFormat OutputFormat的值不一样:

inputFormat:org.apache.hadoop.mapred.TextInputFormat,

outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat,

 

inputFormat:org.apache.hadoop.mapred.SequenceFileInputFormat,

outputFormat:org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat,

 

在从表中读取数据时,Hive 会使用InputFormat,在向表写入数据时,会使用OutputFormatInputFormat会从文件中读取key-value对。默认情况下,Hive会直接忽略掉key的内容,而是只有value中的数据。因为key来自于TextInputFormat,是每行的字节偏移量,并不是用户的数据。

 

2.文件格式

Hive中最简单的数据格式是文本文件格式,可以使用任意分隔符进行分割,同时它也是默认的文件格式,等价于:在创建时通过STORED AS TEXTFILE 语句指定使用文本存储格式

文本文件便于与其他工具共享数据,也便于查看和编辑。不过,相对于二进制文件,文本文件存储的空间要大。我们可以使用压缩,但是如果使用二进制文件存储格式的话,则既可以节约存储空间,也可以提高I/O性能。

 

2.1 SequenceFile

其中一种存储格式是SequenceFile文件存储格式,在定义表结构时可以通过STORED AS SEQUENCEFILE 语句指定。SequenceFile Hadoop生态系统中支持的标准文件格式,可以在块级别和记录级别进行压缩,这对于优化磁盘利用率和I/O来说非常有意义。同时仍然可以支持按照块级别的文件分割,以方便并行处理。Hive 所支持的另一个高效二进制文件是RCFile

 

2.2 RCFile

大多数HadoopHive都是行式存储的,大多数场景下,这是比较高效的。高效的原因有:

1.     大多数的表具有的字段个数都不大(一般120个字段)

2.     对文件按块进行压缩对于需要处理重复数据的情况比较高

3.     很多的处理和调试工具(例如moreheadawk)都可以很好地应用于行式存储数据

但是对于某些特定类型的数据和应用,列式存储会更适用。例如,表中有成百上千个字段,但是大多数查询仅使用其中小部分字段,这时扫描所有的行和过滤掉大部分数据显然是很浪费的。如果数据存储是列式存储,那么仅扫描需要的列数据就可以提高性能。

对于列式存储,进行压缩通常会非常高效,特别是在这列的数据具有较低计数的时候。同时,一些列式存储并不需要物理存储null值的列。

基于这些场景,Hive中设计了RCFile

Hive 另外一个优点是:可以很容易地在不同的存储格式间转换数据。对一个表执行一个SELECT查询时,或是向表写入执行INSERT操作时,Hive会使用这个表的metadata信息,自动执行转换过程,而不需要额外的程序来对不同存储格式进行转换。

这里我们举一个例子,首先使用ColumarSerDeRCFileInputFormatRCFileOutputFormat参数创建表:

> select * from a;

OK

4       5

3       2

 

> create table columnTable(key int, value int)

> ROW FORMAT SERDE

> 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'

> STORED AS

> INPUTFORMAT 'org.apache.hadoop.hive.ql.io.RCFileInputFormat'

> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat';

OK

 

hive> FROM a INSERT OVERWRITE TABLE columnTable SELECT a.key, a.value;

 

对于 RCFile 来说,无法使用通常工具打开RCFile,也无法使用通常打开SequenceFile的工具打开。例如:

>cat 000000_0

RCF    hive.io.rcfile.column.number2Ч];E3:'c
     
  
4352

 

不过Hive 提供了一个rcfilecat工具,用于展示RCFile文件内容:

> hive --service rcfilecat /user/hive/warehouse/columntable/000000_0

4       5

3       2

 

3. 记录格式:SerDe

SerDeSerializer/Deserializer的简称。一个SerDe允许Hive从一个表读入数据,并以任意用户定义的格式写回HDFS。它包含了将一条记录的非结构化数据转化成Hive可以使用的一条记录的过程。

Hive SerDe 库在 org.apache.hadoop.hive.serde2 中(旧版本的SerDe 库在 org.apache.hadoop.hive.serde中,已经被弃用),它本身包含了一些内置的SerDes,如:

1.     AvroHive 0.9.1 及之后版本)

2.     ORCHive 0.11 及之后版本)

3.     RegEx

4.     Thrift

5.     ParquetHive 0.13及之后版本)

6.     CSVHive 0.14及之后版本)

7.     JsonSerDeHive 0.12 及之后版本,在hcatalog-core中)

需要注意的是:在Hive 0.12 之前的发行版中,Amazon提供了一个JSON SerDe,位于s3://elasticmapreduce/samples/hive-ads/libs/jsonserde.jar

也有用户定义的SerDes,不过需要用户实现,或是使用第三方的SerDe

 

SerDe的用途与过程有以下三点:

·       Hive 使用SerDe(以及FileFormat)读写表中的行

·       HDFS文件 --> InputFormat --> <key, value> --> Deserializer --> Row object

·       Row object --> Serializer --> <key, value> --> OutputFormat --> HDFS files

这里需要注意的是:这里的key部分在读入后是被忽略掉的(因为key来自于TextInputFormat,是每行的字节偏移量,并不是用户的数据),基本上行对象是存在value中的。

 

在内部,Hive 引擎使用定义的InputFormat来读取一行条目,然后此记录会被传递给SerDe.Deserializer() 方法进行处理。

 

JSON SerDe为例,如果用户想使用Hive 查询JSON格式的数据。若是不使用SerDe,且每行为一个json“文件”的话,则可以在使用TextInputFormat 读入,然后使用一个JSONSerDe JSON文档作为一条记录进行解析。例如:

   >  create external table messages(

    >    id int,

    >    message string

    >   )

    >   row format serde "org.apache.hive.hcatalog.data.JsonSerDe"

    >  location 's3://tang-emr/jsonserde/'

>  ;

 

JSON数据为:

{"id":1,"message":"yep"}

{"id":2,"message":"asdf"}

{"id":3,"message":"cddacddc","fa":"asf"}

 

hive> select * from messages;

OK

1       yep

2       asdf

3       cddacddc

 

 

References:

1. Hive 编程指南

2. https://cwiki.apache.org/confluence/display/Hive/SerDe
 

posted @ 2019-05-28 20:36  ZacksTang  阅读(2739)  评论(0编辑  收藏  举报