集合源码分析之 HashSet
一 知识准备
HashSet 是Set接口的实现类,Set存在的最大意义区别于List就是,Set中存放的元素不能够重复,就是不能够有两个相同的元素存放在Set中,那么怎样的两个元素才算是相同的,这里就不得不说,因为每个类都是Object类的子类,因此都有Hashcode和equals方法,这两个方法就是用来判断两个元素是否相同的根据。
判断原则:
第一步:比较对象的hashcode,不相等,则对象不等,相等,进入第二步
第二步:比较对象的equals,相等则对象相等,不相等,则对象不相等
hashcode的三条约定
1. 同一个对象,任何时候返回的hashcode都应该是同一个值
2 同一个对象的hashcode必须相等
3 不同对象的hashcode可能不等,但是要是能够做到不同对象hashcode一定不等可以避免hash冲突,提高程序性能
重写equals方法 ,必须重写hashcode方法。
二 HashSet实现简要(JDK 8.0)
HashSet 内部是通过Map来实现的,众所周知,Map<key,value>,是通过键值对的方式来存储对象的,其中key通过hash 散列,是唯一存在的,因此使用Map中的key来实现HashSet存值,是顺理成章并且实现简单,用法方便。
三 源码分析
HashSet 继承 AbstractSet 并实现Set接口,支持克隆,序列化
public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, java.io.Serializable
字段:序列号,map, key对象的object虚值
static final long serialVersionUID = -5024744406713321676L; // 用于实现HashSet的Map private transient HashMap<E,Object> map; // 用于Map映射 HashSet 存值时,用于Map映射Key的object虚值 private static final Object PRESENT = new Object();
构造方法,
参数:initialCapacity 初始容量
loadFactor 负载因子
dummy ignored (distinguishes this constructor from other int, float constructor
public HashSet() { map = new HashMap<>(); } public HashSet(Collection<? extends E> c) { map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); } public HashSet(int initialCapacity, float loadFactor) { map = new HashMap<>(initialCapacity, loadFactor); } HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); }
存取方法
遍历:Iterator<E>
public Iterator<E> iterator() { return map.keySet().iterator(); }
添加:add<E>
public boolean add(E e) { return map.put(e, PRESENT)==null; }
删除:remove<E>
public boolean remove(Object o) { return map.remove(o)==PRESENT; }
其他常用方法
public boolean isEmpty() { return map.isEmpty(); } public boolean contains(Object o) { return map.containsKey(o); } public boolean add(E e) { return map.put(e, PRESENT)==null; } public boolean remove(Object o) { return map.remove(o)==PRESENT; } public void clear() { map.clear(); } public Object clone() { try { HashSet<E> newSet = (HashSet<E>) super.clone(); newSet.map = (HashMap<E, Object>) map.clone(); return newSet; } catch (CloneNotSupportedException e) { throw new InternalError(e); } }
全部源码
/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; import java.io.InvalidObjectException; /** * This class implements the <tt>Set</tt> interface, backed by a hash table * (actually a <tt>HashMap</tt> instance). It makes no guarantees as to the * iteration order of the set; in particular, it does not guarantee that the * order will remain constant over time. This class permits the <tt>null</tt> * element. * * <p>This class offers constant time performance for the basic operations * (<tt>add</tt>, <tt>remove</tt>, <tt>contains</tt> and <tt>size</tt>), * assuming the hash function disperses the elements properly among the * buckets. Iterating over this set requires time proportional to the sum of * the <tt>HashSet</tt> instance's size (the number of elements) plus the * "capacity" of the backing <tt>HashMap</tt> instance (the number of * buckets). Thus, it's very important not to set the initial capacity too * high (or the load factor too low) if iteration performance is important. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a hash set concurrently, and at least one of * the threads modifies the set, it <i>must</i> be synchronized externally. * This is typically accomplished by synchronizing on some object that * naturally encapsulates the set. * * If no such object exists, the set should be "wrapped" using the * {@link Collections#synchronizedSet Collections.synchronizedSet} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the set:<pre> * Set s = Collections.synchronizedSet(new HashSet(...));</pre> * * <p>The iterators returned by this class's <tt>iterator</tt> method are * <i>fail-fast</i>: if the set is modified at any time after the iterator is * created, in any way except through the iterator's own <tt>remove</tt> * method, the Iterator throws a {@link ConcurrentModificationException}. * Thus, in the face of concurrent modification, the iterator fails quickly * and cleanly, rather than risking arbitrary, non-deterministic behavior at * an undetermined time in the future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see Set * @see TreeSet * @see HashMap * @since 1.2 */ public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, java.io.Serializable { static final long serialVersionUID = -5024744406713321676L; private transient HashMap<E,Object> map; // Dummy value to associate with an Object in the backing Map private static final Object PRESENT = new Object(); /** * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has * default initial capacity (16) and load factor (0.75). */ public HashSet() { map = new HashMap<>(); } /** * Constructs a new set containing the elements in the specified * collection. The <tt>HashMap</tt> is created with default load factor * (0.75) and an initial capacity sufficient to contain the elements in * the specified collection. * * @param c the collection whose elements are to be placed into this set * @throws NullPointerException if the specified collection is null */ public HashSet(Collection<? extends E> c) { map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); } /** * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has * the specified initial capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hash map * @param loadFactor the load factor of the hash map * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive */ public HashSet(int initialCapacity, float loadFactor) { map = new HashMap<>(initialCapacity, loadFactor); } /** * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has * the specified initial capacity and default load factor (0.75). * * @param initialCapacity the initial capacity of the hash table * @throws IllegalArgumentException if the initial capacity is less * than zero */ public HashSet(int initialCapacity) { map = new HashMap<>(initialCapacity); } /** * Constructs a new, empty linked hash set. (This package private * constructor is only used by LinkedHashSet.) The backing * HashMap instance is a LinkedHashMap with the specified initial * capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hash map * @param loadFactor the load factor of the hash map * @param dummy ignored (distinguishes this * constructor from other int, float constructor.) * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive */ HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); } /** * Returns an iterator over the elements in this set. The elements * are returned in no particular order. * * @return an Iterator over the elements in this set * @see ConcurrentModificationException */ public Iterator<E> iterator() { return map.keySet().iterator(); } /** * Returns the number of elements in this set (its cardinality). * * @return the number of elements in this set (its cardinality) */ public int size() { return map.size(); } /** * Returns <tt>true</tt> if this set contains no elements. * * @return <tt>true</tt> if this set contains no elements */ public boolean isEmpty() { return map.isEmpty(); } /** * Returns <tt>true</tt> if this set contains the specified element. * More formally, returns <tt>true</tt> if and only if this set * contains an element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>. * * @param o element whose presence in this set is to be tested * @return <tt>true</tt> if this set contains the specified element */ public boolean contains(Object o) { return map.containsKey(o); } /** * Adds the specified element to this set if it is not already present. * More formally, adds the specified element <tt>e</tt> to this set if * this set contains no element <tt>e2</tt> such that * <tt>(e==null ? e2==null : e.equals(e2))</tt>. * If this set already contains the element, the call leaves the set * unchanged and returns <tt>false</tt>. * * @param e element to be added to this set * @return <tt>true</tt> if this set did not already contain the specified * element */ public boolean add(E e) { return map.put(e, PRESENT)==null; } /** * Removes the specified element from this set if it is present. * More formally, removes an element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>, * if this set contains such an element. Returns <tt>true</tt> if * this set contained the element (or equivalently, if this set * changed as a result of the call). (This set will not contain the * element once the call returns.) * * @param o object to be removed from this set, if present * @return <tt>true</tt> if the set contained the specified element */ public boolean remove(Object o) { return map.remove(o)==PRESENT; } /** * Removes all of the elements from this set. * The set will be empty after this call returns. */ public void clear() { map.clear(); } /** * Returns a shallow copy of this <tt>HashSet</tt> instance: the elements * themselves are not cloned. * * @return a shallow copy of this set */ @SuppressWarnings("unchecked") public Object clone() { try { HashSet<E> newSet = (HashSet<E>) super.clone(); newSet.map = (HashMap<E, Object>) map.clone(); return newSet; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Save the state of this <tt>HashSet</tt> instance to a stream (that is, * serialize it). * * @serialData The capacity of the backing <tt>HashMap</tt> instance * (int), and its load factor (float) are emitted, followed by * the size of the set (the number of elements it contains) * (int), followed by all of its elements (each an Object) in * no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out HashMap capacity and load factor s.writeInt(map.capacity()); s.writeFloat(map.loadFactor()); // Write out size s.writeInt(map.size()); // Write out all elements in the proper order. for (E e : map.keySet()) s.writeObject(e); } /** * Reconstitute the <tt>HashSet</tt> instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read capacity and verify non-negative. int capacity = s.readInt(); if (capacity < 0) { throw new InvalidObjectException("Illegal capacity: " + capacity); } // Read load factor and verify positive and non NaN. float loadFactor = s.readFloat(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) { throw new InvalidObjectException("Illegal load factor: " + loadFactor); } // Read size and verify non-negative. int size = s.readInt(); if (size < 0) { throw new InvalidObjectException("Illegal size: " + size); } // Set the capacity according to the size and load factor ensuring that // the HashMap is at least 25% full but clamping to maximum capacity. capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f), HashMap.MAXIMUM_CAPACITY); // Create backing HashMap map = (((HashSet<?>)this) instanceof LinkedHashSet ? new LinkedHashMap<E,Object>(capacity, loadFactor) : new HashMap<E,Object>(capacity, loadFactor)); // Read in all elements in the proper order. for (int i=0; i<size; i++) { @SuppressWarnings("unchecked") E e = (E) s.readObject(); map.put(e, PRESENT); } } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@link Spliterator} over the elements in this * set. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#DISTINCT}. Overriding implementations should document * the reporting of additional characteristic values. * * @return a {@code Spliterator} over the elements in this set * @since 1.8 */ public Spliterator<E> spliterator() { return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0); } }