动态规划之矩阵连乘

给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

例如:

  A1={30x35} ; A2={35x15} ;A3={15x5} ;A4={5x10} ;A5={10x20} ;A6={20x25} ;

结果为:((A1(A2A3))((A4A5)A6))  最小的乘次为15125。

 

原问题为n个矩阵连乘,将原问题分解为子问题,即当n等于1,2,3.....时。

n==1时,单一矩阵,不需要计算。最小乘次为0

n==2时,根据n==1时的结果,遍历计算出每相邻两个矩阵的最小乘次

n==3时,根据n==1和n==2时的结果,此时已经求出每相邻1个、2个矩阵的最小乘次,遍历计算出该相邻三个矩阵的最小乘次

依次类推……

n==n时,根据n==1、2、……n-1时的结果,此时已经求出每相邻1个、2个、3个……n-1个矩阵的最小乘次,由此求出n==n时的最小乘次

 

每当n增加1时,就利用已求出的子结构来求解此时的最优值。

 

数学描述如下:

设矩阵Ai的维数为P× Pi+1

A[i:j]为矩阵AiAi+1....Aj的连乘积,即从Ai到Aj的连乘积,其中,0 <= i <= j <= n-1

设m[i][j]为计算A[i:j]的最小乘次,所以原问题的最优值为m[0][n-1]

 

当 i==j 时,单一矩阵,无需计算。m[i][i]=0,i=0,1,....n-1

当 i < j 时,利用最优子结构,计算m[i][j]。即寻找断开位置k(i <= k < j),使得m[i][k]+m[k+1][j]+Pi*Pk+1*Pj+1最小。

 

 

该算法的python实现:

 1 # coding=gbk
 2 # 矩阵连乘问题
 3 __author__ = 'ice'
 4 
 5 
 6 # row_num 每个矩阵的行数
 7 class Matrix:
 8     def __init__(self, row_num=0, col_num=0, matrix=None):
 9         if matrix != None:
10             self.row_num = len(matrix)
11             self.col_num = len(matrix[0])
12         else:
13             self.row_num = row_num
14             self.col_num = col_num
15         self.matrix = matrix
16 
17 
18 def matrix_chain(matrixs):
19     matrix_num = len(matrixs)
20     count = [[0 for j in range(matrix_num)] for i in range(matrix_num)]
21     flag = [[0 for j in range(matrix_num)] for i in range(matrix_num)]
22     for interval in range(1, matrix_num + 1):
23         for i in range(matrix_num - interval):
24             j = i + interval
25             count[i][j] = count[i][i] + count[i + 1][j] + matrixs[i].row_num * matrixs[i + 1].row_num * matrixs[j].col_num
26             flag[i][j] = i
27             for k in range(i + 1, j):
28                 temp = count[i][k] + count[k + 1][j] + matrixs[i].row_num * matrixs[k + 1].row_num * matrixs[j].col_num
29                 if temp < count[i][j]:
30                     count[i][j] = temp
31                     flag[i][j] = k
32     traceback(0, matrix_num - 1, flag)
33     return count[0][matrix_num - 1]
34 
35 
36 def traceback(i, j, flag):
37     if i == j:
38         return
39     if j - i > 1:
40         print(str(i + 1) + '~' + str(j + 1), end=': ')
41         print(str(i + 1) + ":" + str(flag[i][j] + 1), end=',')
42         print(str(flag[i][j] + 2) + ":" + str(j + 1))
43     traceback(i, flag[i][j], flag)
44     traceback(flag[i][j] + 1, j, flag)
45 
46 
47 matrixs = [Matrix(30, 35), Matrix(35, 15), Matrix(15, 5), Matrix(5, 10), Matrix(10, 20), Matrix(20, 25)]
48 result = matrix_chain(matrixs)
49 print(result)
50 
51 # 1~6: 1:3,4:6
52 # 1~3: 1:1,2:3
53 # 4~6: 4:5,6:6
54 # 15125

 

posted @ 2015-10-31 10:02  欠扁的小篮子  阅读(994)  评论(0编辑  收藏  举报