hdu4725 The Shortest Path in Nya Graph
首先感谢prey大爷提供的脑洞和特殊的dijkstra姿势
题意就不说了..主要注意题目有问题,输入的是m条边,愣是写的n条边[还想为什么有个输入的值完全没用到呢....
在这里放上prey帮调题的时候写的数据生成器
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 100233; 4 int perm[maxn]; 5 vector<int> G[maxn]; 6 int main(int argc, char ** argv) 7 { 8 assert(argc == 5); 9 int n = atoi(argv[1]), m = atoi(argv[2]), 10 lim = atoi(argv[3]), c = atoi(argv[4]), seed; 11 FILE *rnd = fopen("/dev/urandom", "r"); 12 fread(&seed, 4, 1, rnd); fclose(rnd); 13 mt19937 RAND(seed); 14 printf("1\n%d %d %d\n", n, m, c); 15 for(int i = 1; i <= n; i++) 16 printf("%d ", int(RAND()%(n) + 1)); 17 printf("\n"); 18 set<pair<int, int> > S; 19 for(int i = 1; i <= m; i++) 20 { 21 int u, v; 22 do u = int(RAND() % n + 1), v = int(RAND() % n + 1); 23 while (u == v || S.count(make_pair(u, v)) || S.count(make_pair(v, u))); 24 S.insert(make_pair(u, v)); 25 printf("%d %d %d\n", u, v, int(RAND()%lim)); 26 } 27 }
首先编译数据生成器(gen.cpp)
g++ gen.cpp -std=c++11 -o gen
再编译ac程序
g++ acc.cpp -o acc
从in里读取输入文件
./acc <in
然后编译自己的程序
g++ 2.cpp -o waa
./waa <in
最后执行这句话 前面的数字代表给数据生成器提供的参数,这里代表的事n,m,mod,c
while ./gen 100000 100000 1000 2333 > in && ./acc < in > ac && ./waa < in > wa && diff -w ac wa;do echo OK;done
最后放上拥有特殊姿势的dijkstra
1 #include <stdio.h> 2 #include <string.h> 3 #include <vector> 4 #include <queue> 5 #define maxn 300010 6 #define maxm 600010 7 #define INF 200000000 8 #include <algorithm> 9 using namespace std; 10 vector <unsigned > fr[maxn]; 11 struct dij{ 12 unsigned d, u; dij() {} 13 inline bool operator<(const dij& other) const { return d > other.d; } 14 inline dij(unsigned _d, unsigned _u) : d(_d), u(_u) {} 15 }; 16 struct heap 17 { 18 unsigned size; 19 dij data[maxm]; 20 inline void push(dij x) { data[size++] = x; push_heap(data, data + size); } 21 inline dij top() { return *data; } 22 inline void pop() { pop_heap(data, data + size--); } 23 }Q; 24 struct ed{ 25 unsigned u, v, w, next; 26 }a[maxm]; 27 unsigned n, m, c, tot; 28 unsigned be[maxn], first[maxn], done[maxn]; 29 unsigned dis[maxn]; 30 void addedge(unsigned st, unsigned end, unsigned val) 31 { 32 a[++tot].u = st;a[tot].v = end;a[tot].w = val; 33 a[tot].next =first[st];first[st] = tot; 34 } 35 inline void DIJKSTRA() 36 { 37 for(unsigned i = 1; i <=3*n; i++)dis[i] = INF, done[i] = 0; 38 Q.push(dij(dis[1] = 0, 1)); 39 while (Q.size) 40 { 41 unsigned u = Q.top().u; Q.pop(); 42 if(done[u])continue; 43 done[u] = 1; 44 for(unsigned e = first[u]; e; e = a[e].next) 45 { 46 unsigned v = a[e].v; 47 if(dis[u] + a[e].w < dis[v]) 48 { 49 dis[v] = dis[u] + a[e].w; 50 Q.push(dij(dis[v], v)); 51 } 52 } 53 } 54 55 } 56 template<class T> inline void maxt(T& A, T b) { if (A < b) A = b; } 57 //template<class T> inline bool mint(T& a, T b) { return a > b ? a = b, true : false; } 58 template<class T> inline void mint(T& A, T b) { if (A > b) A = b; } 59 //if (mint(dist[v], dist[u] + e[ee].w) && !inq[v]) 60 // inq[que[qt++] = v] = true; prwang两行spfa 61 int main() 62 { 63 unsigned T, x, y, z; 64 scanf("%u", &T); 65 for(unsigned t = 1; t <= T; t++) 66 { 67 memset(first, 0, sizeof(first)); 68 memset(a, 0, sizeof(a)); 69 memset(be, 0, sizeof(be)); 70 tot = 0; 71 scanf("%u %u %u", &n, &m, &c); 72 for(unsigned i = 1; i <= n; i++)fr[i].clear(); 73 unsigned lmin = n, lmax = 1; 74 for(unsigned i = 1; i <= n; i++) 75 { 76 scanf("%u ", &be[i]); 77 fr[be[i]].push_back(i); 78 maxt(lmax, be[i]), mint(lmin, be[i]); 79 } 80 for(unsigned i = 1; i <= m; i++) 81 { 82 scanf("%u %u %u", &x, &y, &z); 83 addedge(x, y, z);addedge(y, x, z); 84 } 85 unsigned cc = n + 1; 86 for (unsigned i = lmin, j = i + 1; i < lmax; i = j++) 87 { 88 while (!fr[j].size()) ++j; 89 if (j - i > 1) continue; 90 for(unsigned k = 0; k < (unsigned)fr[i].size(); k++) 91 addedge(fr[i][k], cc, 0); 92 for(unsigned k = 0; k < (unsigned)fr[j].size(); k++) 93 addedge(cc, fr[j][k], c*(j-i)); 94 cc++; 95 for(unsigned k = 0; k < (unsigned)fr[i].size(); k++) 96 addedge(cc, fr[i][k], 0); 97 for(unsigned k = 0; k < (unsigned)fr[j].size(); k++) 98 addedge(fr[j][k], cc, c*(j-i)); 99 cc++; 100 } 101 DIJKSTRA(); 102 if(dis[n] == INF) 103 printf("Case #%u: -1\n", t); 104 else 105 printf("Case #%u: %u\n", t, dis[n]); 106 } 107 }