二维前缀和
1. S[i,j]S[i,j]即为图1红框中所有数的的和为:
2. S[i,j]=S[i,j−1]+S[i−1,j]−S[i−1,j−1]+a[i,j]S[i,j]=S[i,j−1]+S[i−1,j]−S[i−1,j−1]+a[i,j]
(x1,y1),(x2,y2)(x1,y1),(x2,y2)这一子矩阵中的所有数之和为:S[x2,y2]−S[x1−1,y2]−S[x2,y1−1]+S[x1−1,y1−1]
代码:
#include <iostream> using namespace std; const int N = 1010; int a[N][N], s[N][N]; int main() { int n, m, q; cin >> n >> m >> q; for (int i = 1; i <= n; i++)//循环从1开始,a[0][0],s[0][0]都为0 for (int j = 1; j <= m; j++) { scanf("%d", &a[i][j]); s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j]; // 求前缀和 } while (q--) { int x1,y1,x2,y2; scanf("%d%d%d%d", &x1, &y1, &x2, &y2); // 算子矩阵的和 printf("%d\n", s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1]); } return 0; }