hdu 3364 高斯入门。。

扣了一个高斯的介绍 比较全面(来自http://blog.csdn.net/duanxian0621/article/details/7408887)

高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。
高斯消元法的原理是:
若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组。
所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解。

以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用。

首先,先介绍程序中高斯消元法的步骤:
(我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数不同)

1. 把方程组转换成增广矩阵。

2. 利用初等行变换来把增广矩阵转换成行阶梯阵。
枚举k从0到equ – 1,当前处理的列为col(初始为0) ,每次找第k行以下(包括第k行),col列中元素绝对值最大的列与第k行交换。如果col列中的元素全为0,那么则处理col + 1列,k不变。

3. 转换为行阶梯阵,判断解的情况。

① 无解
当方程中出现(0, 0, …, 0, a)的形式,且a != 0时,说明是无解的。

② 唯一解
条件是k = equ,即行阶梯阵形成了严格的上三角阵。利用回代逐一求出解集。

③ 无穷解。
条件是k < equ,即不能形成严格的上三角形,自由变元的个数即为equ – k,但有些题目要求判断哪些变元是不缺定的。
    这里单独介绍下这种解法:
首先,自由变元有var - k个,即不确定的变元至少有var - k个。我们先把所有的变元视为不确定的。在每个方程中判断不确定变元的个数,如果大于1个,则该方程无法求解。如果只有1个变元,那么该变元即可求出,即为确定变元。

以上介绍的是求解整数线性方程组的求法,复杂度是O(n3)。浮点数线性方程组的求法类似,但是要在判断是否为0时,加入EPS,以消除精度问题。


下面讲解几道OJ上的高斯消元法求解线性方程组的题目:

POJ 1222 EXTENDED LIGHTS OUT
http://acm.pku.edu.cn/JudgeOnline/problem?id=1222
POJ 1681 Painter's Problem
http://acm.pku.edu.cn/JudgeOnline/problem?id=1681
POJ 1753 Flip Game
http://acm.pku.edu.cn/JudgeOnline/problem?id=1753
POJ 1830 开关问题
http://acm.pku.edu.cn/JudgeOnline/problem?id=1830

POJ 3185 The Water Bowls

http://acm.pku.edu.cn/JudgeOnline/problem?id=3185
开关窗户,开关灯问题,很典型的求解线性方程组的问题。方程数和变量数均为行数*列数,直接套模板求解即可。但是,当出现无穷解时,需要枚举解的情况,因为无法判断哪种解是题目要求最优的。

POJ 2947 Widget Factory
http://acm.pku.edu.cn/JudgeOnline/problem?id=2947
求解同余方程组问题。与一般求解线性方程组的问题类似,只要在求解过程中加入取余即可。
注意:当方程组唯一解时,求解过程中要保证解在[3, 9]之间。

POJ 1166 The Clocks
http://acm.pku.edu.cn/JudgeOnline/problem?id=1166
经典的BFS问题,有各种解法,也可以用逆矩阵进行矩阵相乘。
但是这道题用高斯消元法解决好像有些问题(困扰了我N天...持续困扰中...),由于周期4不是素数,故在求解过程中不能进行取余(因为取余可能导致解集变大),但最后求解集时,还是需要进行取余操作,那么就不能保证最后求出的解是正确的...在discuss里提问了好几天也没人回答...希望哪位路过的大牛指点下~~

POJ 2065 SETI
http://acm.pku.edu.cn/JudgeOnline/problem?id=2065
同样是求解同余方程组问题,由于题目中的p是素数,可以直接在求解时取余,套用模板求解即可。(虽然AC的人很少,但它还是比较水的一道题,)

POJ 1487 Single-Player Games
http://acm.pku.edu.cn/JudgeOnline/problem?id=1487
很麻烦的一道题目...题目中的叙述貌似用到了编译原理中的词法定义(看了就给人不想做的感觉...)
解方程组的思想还是很好看出来了(前提是通读题目不下5遍...),但如果把树的字符串表达式转换成方程组是个难点,我是用栈 + 递归的做法分解的。首先用栈的思想求出该结点的孩子数,然后递归分别求解各个孩子。
这题解方程组也与众不同...首先是求解浮点数方程组,要注意精度问题,然后又询问不确定的变元,按前面说的方法求解。
一顿折腾后,这题居然写了6000+B...而且囧的是巨人C++ WA,G++ AC,可能还是精度的问题吧...看这题目,看这代码,就没有改的欲望...

hdu OJ 2449
http://acm.hdu.edu.cn/showproblem.php?pid=2449
哈尔滨现场赛的一道纯高斯题,当时鹤牛敲了1个多小时...主要就是写一个分数类,套个高精模板(偷懒点就Java...)搞定~~
注意下0和负数时的输出即可。

fze OJ 1704
http://acm.fzu.edu.cn/problem.php?pid=1704
福大月赛的一道题目,还是经典的开关问题,但是方程数和变元数不同(考验模板的时候到了~~),最后要求增广阵的阶,要用到高精度~~

Sgu 275 To xor or not to xor
http://acm.sgu.ru/problem.php?contest=0&problem=275
题解:
http://hi.baidu.com/czyuan%5Facm/blog/item/be3403d32549633d970a16ee.html

 

然后说下这道题目,比较复杂的是构建方程。我们令开关的状态为变量,灯的样式为方程的结果。由于只有0 1 两种情况,而且同一个按钮多次按没有用,那么我们这里的方程构造出来的就是一个异或方程。然后就是解的问题,由于开关的状态只有0 1两种状态,当我们求出自由元的个数x的时候,2的x次方就是我们要求的答案。

ac代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <queue>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=55;
struct matrix{
    int f[maxn][maxn];
}e,g;
int find(matrix a,int m,int n)//高斯消元
{
    int i=1,j=1,k,r,u;
    while(i<=m&&j<=n)//处理第i个方程,第j个变量
    {
        r=i;
        for(k=i;k<=m;k++)
        if(a.f[k][j]){r=k;break;}
        if(a.f[r][j])
        {
            if(r!=i)for(k=0;k<=n+1;k++)swap(a.f[r][k],a.f[i][k]);
            for(u=i+1;u<=m;u++)if(a.f[u][j])
                for(k=i;k<=n+1;k++)a.f[u][k]^=a.f[i][k];
            i++;
        }
        j++;
    }
    for(u=i;u<=m;u++)//判断无解
        if(a.f[u][n+1])return -1;
    return i-1;
}
int main()
{
    int T,tt=0;
    cin>>T;
    while(T--)
    {
        int i,j,k,n,m,a,b,q,r;
        cin>>n>>m;
        memset(e.f,0,sizeof(e.f));
        for(i=1;i<=m;i++)
        {
            cin>>k;
            for(j=0;j<k;j++)
            {
                cin>>a;
                e.f[a][i]=1;
            }
        }
        cout<<"Case "<<++tt<<":"<<endl;
        cin>>q;
        while(q--)
        {
            for(i=1;i<=n;i++)
            {
                cin>>a;
                e.f[i][m+1]=a;
            }
            r=find(e,n,m);//求出有界遍历个数r
            if(r==-1)cout<<0<<endl;
            else cout<<(1LL<<(m-r))<<endl;//注意范围,超int
        }
    }
    return  0;
}

 

posted @ 2017-08-16 16:39  猪突猛进!!!  阅读(236)  评论(0编辑  收藏  举报