点云法向量估计方法
已经大半年没更新博客了,今天来更新一下博客。法线在点云里作为表述点云特征的一种重要信息,pcl提供了成熟的接口。当然自己去实现,算法难度也不大,为了熟悉pcl源码,博主之前对pcl源码求取法线的代码进行了剥离,同时对算法的实现流程做了一个简答的表述,让法线从此不再神秘。
点云法向量的估计流程
1.对于第一步就比较常规了,建议大家直接使用pcl的kdtree或者octree进行最近邻搜索
2.求协方差矩阵,这里贴一段代码(当然也可以自己实现,难度不大)
//协方差矩阵求解方法 unsigned int computeMeanAndCovarianceMatrix(const pcl::PointCloud<PointXYZ> &cloud, Eigen::Matrix<double, 3, 3> &covariance_matrix, Eigen::Matrix<double, 4, 1> ¢roid) { // create the buffer on the stack which is much faster than using cloud[indices[i]] and centroid as a buffer Eigen::Matrix<double, 1, 9, Eigen::RowMajor> accu = Eigen::Matrix<double, 1, 9, Eigen::RowMajor>::Zero(); size_t point_count; if (cloud.is_dense) { point_count = cloud.size(); // For each point in the cloud for (size_t i = 0; i < point_count; ++i) { accu[0] += cloud[i].x * cloud[i].x; accu[1] += cloud[i].x * cloud[i].y; accu[2] += cloud[i].x * cloud[i].z; accu[3] += cloud[i].y * cloud[i].y; // 4 accu[4] += cloud[i].y * cloud[i].z; // 5 accu[5] += cloud[i].z * cloud[i].z; // 8 accu[6] += cloud[i].x; accu[7] += cloud[i].y; accu[8] += cloud[i].z; } } else { point_count = 0; for (size_t i = 0; i < cloud.size(); ++i) { if (!isFinite(cloud[i])) continue; accu[0] += cloud[i].x * cloud[i].x; accu[1] += cloud[i].x * cloud[i].y; accu[2] += cloud[i].x * cloud[i].z; accu[3] += cloud[i].y * cloud[i].y; accu[4] += cloud[i].y * cloud[i].z; accu[5] += cloud[i].z * cloud[i].z; accu[6] += cloud[i].x; accu[7] += cloud[i].y; accu[8] += cloud[i].z; ++point_count; } } accu /= static_cast<double> (point_count); if (point_count != 0) { //centroid.head<3> () = accu.tail<3> (); -- does not compile with Clang 3.0 centroid[0] = accu[6]; centroid[1] = accu[7]; centroid[2] = accu[8]; centroid[3] = 1; covariance_matrix.coeffRef(0) = accu[0] - accu[6] * accu[6]; covariance_matrix.coeffRef(1) = accu[1] - accu[6] * accu[7]; covariance_matrix.coeffRef(2) = accu[2] - accu[6] * accu[8]; covariance_matrix.coeffRef(4) = accu[3] - accu[7] * accu[7]; covariance_matrix.coeffRef(5) = accu[4] - accu[7] * accu[8]; covariance_matrix.coeffRef(8) = accu[5] - accu[8] * accu[8]; covariance_matrix.coeffRef(3) = covariance_matrix.coeff(1); covariance_matrix.coeffRef(6) = covariance_matrix.coeff(2); covariance_matrix.coeffRef(7) = covariance_matrix.coeff(5); } return (static_cast<unsigned int> (point_count)); }
3.特征值以及对应的特征向量的求解(贴一段代码)
说明一下eigen也提供了相关的方法,博主这里对pcl的源码进行了整理,二者所求结果不尽一致,孰优孰劣大家可以在日常使用中去进行检验。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | #include <iostream> #include <Eigen/Dense> #include <Eigen/Eigenvalues> //#include <pcl/common/centroid.h> //#include <pcl/common/eigen.h> using namespace Eigen; using namespace std; //using namespace pcl; void computeRoots2( const Matrix3d::Scalar& b, const Matrix3d::Scalar& c, Eigen::Vector3d& roots) { roots(0) = Matrix3d::Scalar(0); Matrix3d::Scalar d = Matrix3d::Scalar(b * b - 4.0 * c); if (d < 0.0) // no real roots ! THIS SHOULD NOT HAPPEN! d = 0.0; Matrix3d::Scalar sd = ::std:: sqrt (d); roots(2) = 0.5f * (b + sd); roots(1) = 0.5f * (b - sd); } void computeRoots( const Matrix3d& m, Eigen::Vector3d& roots) { typedef Matrix3d::Scalar Scalar; // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The // eigenvalues are the roots to this equation, all guaranteed to be // real-valued, because the matrix is symmetric. Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) + Scalar(2) * m(0, 1) * m(0, 2) * m(1, 2) - m(0, 0) * m(1, 2) * m(1, 2) - m(1, 1) * m(0, 2) * m(0, 2) - m(2, 2) * m(0, 1) * m(0, 1); Scalar c1 = m(0, 0) * m(1, 1) - m(0, 1) * m(0, 1) + m(0, 0) * m(2, 2) - m(0, 2) * m(0, 2) + m(1, 1) * m(2, 2) - m(1, 2) * m(1, 2); Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2); if ( fabs (c0) < Eigen::NumTraits < Scalar > ::epsilon()) // one root is 0 -> quadratic equation computeRoots2(c2, c1, roots); else { const Scalar s_inv3 = Scalar(1.0 / 3.0); const Scalar s_sqrt3 = std:: sqrt (Scalar(3.0)); // Construct the parameters used in classifying the roots of the equation // and in solving the equation for the roots in closed form. Scalar c2_over_3 = c2 * s_inv3; Scalar a_over_3 = (c1 - c2 * c2_over_3) * s_inv3; if (a_over_3 > Scalar(0)) a_over_3 = Scalar(0); Scalar half_b = Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1)); Scalar q = half_b * half_b + a_over_3 * a_over_3 * a_over_3; if (q > Scalar(0)) q = Scalar(0); // Compute the eigenvalues by solving for the roots of the polynomial. Scalar rho = std:: sqrt (-a_over_3); Scalar theta = std:: atan2 (std:: sqrt (-q), half_b) * s_inv3; Scalar cos_theta = std:: cos (theta); Scalar sin_theta = std:: sin (theta); roots(0) = c2_over_3 + Scalar(2) * rho * cos_theta; roots(1) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta); roots(2) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta); // Sort in increasing order. if (roots(0) >= roots(1)) std::swap(roots(0), roots(1)); if (roots(1) >= roots(2)) { std::swap(roots(1), roots(2)); if (roots(0) >= roots(1)) std::swap(roots(0), roots(1)); } if (roots(0) <= 0) // eigenval for symetric positive semi-definite matrix can not be negative! Set it to 0 computeRoots2(c2, c1, roots); } } void eigen33zx( const Matrix3d& mat, Matrix3d& evecs, Eigen::Vector3d& evals) { typedef Matrix3d::Scalar Scalar; // typedef Matrix3d::Scalar Scalar; // Scale the matrix so its entries are in [-1,1]. The scaling is applied // only when at least one matrix entry has magnitude larger than 1. Scalar scale = mat.cwiseAbs().maxCoeff(); if (scale <= std::numeric_limits < Scalar > ::min()) scale = Scalar(1.0); Matrix3d scaledMat = mat / scale; // Compute the eigenvalues computeRoots(scaledMat, evals); if ((evals(2) - evals(0)) <= Eigen::NumTraits < Scalar > ::epsilon()) { // all three equal evecs.setIdentity(); } else if ((evals(1) - evals(0)) <= Eigen::NumTraits < Scalar > ::epsilon()) { // first and second equal Matrix3d tmp; tmp = scaledMat; tmp.diagonal().array() -= evals(2); Eigen::Vector3d vec1 = tmp.row(0).cross(tmp.row(1)); Eigen::Vector3d vec2 = tmp.row(0).cross(tmp.row(2)); Eigen::Vector3d vec3 = tmp.row(1).cross(tmp.row(2)); Scalar len1 = vec1.squaredNorm(); Scalar len2 = vec2.squaredNorm(); Scalar len3 = vec3.squaredNorm(); if (len1 >= len2 && len1 >= len3) evecs.col(2) = vec1 / std:: sqrt (len1); else if (len2 >= len1 && len2 >= len3) evecs.col(2) = vec2 / std:: sqrt (len2); else evecs.col(2) = vec3 / std:: sqrt (len3); evecs.col(1) = evecs.col(2).unitOrthogonal(); evecs.col(0) = evecs.col(1).cross(evecs.col(2)); } else if ((evals(2) - evals(1)) <= Eigen::NumTraits < Scalar > ::epsilon()) { // second and third equal Matrix3d tmp; tmp = scaledMat; tmp.diagonal().array() -= evals(0); Eigen::Vector3d vec1 = tmp.row(0).cross(tmp.row(1)); Eigen::Vector3d vec2 = tmp.row(0).cross(tmp.row(2)); Eigen::Vector3d vec3 = tmp.row(1).cross(tmp.row(2)); Scalar len1 = vec1.squaredNorm(); Scalar len2 = vec2.squaredNorm(); Scalar len3 = vec3.squaredNorm(); if (len1 >= len2 && len1 >= len3) evecs.col(0) = vec1 / std:: sqrt (len1); else if (len2 >= len1 && len2 >= len3) evecs.col(0) = vec2 / std:: sqrt (len2); else evecs.col(0) = vec3 / std:: sqrt (len3); evecs.col(1) = evecs.col(0).unitOrthogonal(); evecs.col(2) = evecs.col(0).cross(evecs.col(1)); } else { Matrix3d tmp; tmp = scaledMat; tmp.diagonal().array() -= evals(2); Eigen::Vector3d vec1 = tmp.row(0).cross(tmp.row(1)); Eigen::Vector3d vec2 = tmp.row(0).cross(tmp.row(2)); Eigen::Vector3d vec3 = tmp.row(1).cross(tmp.row(2)); Scalar len1 = vec1.squaredNorm(); Scalar len2 = vec2.squaredNorm(); Scalar len3 = vec3.squaredNorm(); #ifdef _WIN32 Scalar *mmax = new Scalar[3]; #else Scalar mmax[3]; #endif unsigned int min_el = 2; unsigned int max_el = 2; if (len1 >= len2 && len1 >= len3) { mmax[2] = len1; evecs.col(2) = vec1 / std:: sqrt (len1); } else if (len2 >= len1 && len2 >= len3) { mmax[2] = len2; evecs.col(2) = vec2 / std:: sqrt (len2); } else { mmax[2] = len3; evecs.col(2) = vec3 / std:: sqrt (len3); } tmp = scaledMat; tmp.diagonal().array() -= evals(1); vec1 = tmp.row(0).cross(tmp.row(1)); vec2 = tmp.row(0).cross(tmp.row(2)); vec3 = tmp.row(1).cross(tmp.row(2)); len1 = vec1.squaredNorm(); len2 = vec2.squaredNorm(); len3 = vec3.squaredNorm(); if (len1 >= len2 && len1 >= len3) { mmax[1] = len1; evecs.col(1) = vec1 / std:: sqrt (len1); min_el = len1 <= mmax[min_el] ? 1 : min_el; max_el = len1 > mmax[max_el] ? 1 : max_el; } else if (len2 >= len1 && len2 >= len3) { mmax[1] = len2; evecs.col(1) = vec2 / std:: sqrt (len2); min_el = len2 <= mmax[min_el] ? 1 : min_el; max_el = len2 > mmax[max_el] ? 1 : max_el; } else { mmax[1] = len3; evecs.col(1) = vec3 / std:: sqrt (len3); min_el = len3 <= mmax[min_el] ? 1 : min_el; max_el = len3 > mmax[max_el] ? 1 : max_el; } tmp = scaledMat; tmp.diagonal().array() -= evals(0); vec1 = tmp.row(0).cross(tmp.row(1)); vec2 = tmp.row(0).cross(tmp.row(2)); vec3 = tmp.row(1).cross(tmp.row(2)); len1 = vec1.squaredNorm(); len2 = vec2.squaredNorm(); len3 = vec3.squaredNorm(); if (len1 >= len2 && len1 >= len3) { mmax[0] = len1; evecs.col(0) = vec1 / std:: sqrt (len1); min_el = len3 <= mmax[min_el] ? 0 : min_el; max_el = len3 > mmax[max_el] ? 0 : max_el; } else if (len2 >= len1 && len2 >= len3) { mmax[0] = len2; evecs.col(0) = vec2 / std:: sqrt (len2); min_el = len3 <= mmax[min_el] ? 0 : min_el; max_el = len3 > mmax[max_el] ? 0 : max_el; } else { mmax[0] = len3; evecs.col(0) = vec3 / std:: sqrt (len3); min_el = len3 <= mmax[min_el] ? 0 : min_el; max_el = len3 > mmax[max_el] ? 0 : max_el; } unsigned mid_el = 3 - min_el - max_el; evecs.col(min_el) = evecs.col((min_el + 1) % 3).cross(evecs.col((min_el + 2) % 3)).normalized(); evecs.col(mid_el) = evecs.col((mid_el + 1) % 3).cross(evecs.col((mid_el + 2) % 3)).normalized(); #ifdef _WIN32 delete [] mmax; #endif } // Rescale back to the original size. evals *= scale; } |
4.根据3中的结果即可实现法向量的估计
上面的代码抽取的pcl的源码,接口较多,不过也间接说明了底层算法人员的不易,其实每一个成熟稳定的接口都来自于底层算法人员长期努力的结果,这里向那些开源的算法库致敬。
随便写的有点混乱,我还是来一个例子,对于近邻搜索这一块,网上例子铺天盖地,先略过。
1 2 3 4 5 6 7 8 9 | Matrix3d A; A << 6, -3,0, -3,6, 0, 0, 0, 0; cout << "Here is a 3x3 matrix, A:" << endl << A << endl << endl; Eigen:: Vector3d eigen_values; // pcl::eigen33(A, eigen_values);//pcl的接口 Matrix3d eigenVectors1; eigen33zx(A, eigenVectors1, eigen_values); cout << eigenVectors1 << endl; cout << eigen_values << endl; |
上面的矩阵A是一个协方差矩阵,是博主为了检验该方法是否准确,自己随便用XoY平面上的几个点求解的。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!