PriorityQueue的Java实现

借助heap数据结构实现。

以小顶heap为例(说明值越小优先级越高,如距离),代码如下:

  1 //  PriorityQueue.java
  2 //  Java Spatial Index Library
  3 //  Copyright (C) 2008 aled@users.sourceforge.net
  4 //
  5 //  This library is free software; you can redistribute it and/or
  6 //  modify it under the terms of the GNU Lesser General Public
  7 //  License as published by the Free Software Foundation; either
  8 //  version 2.1 of the License, or (at your option) any later version.
  9 //
 10 //  This library is distributed in the hope that it will be useful,
 11 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 13 //  Lesser General Public License for more details.
 14 //
 15 //  You should have received a copy of the GNU Lesser General Public
 16 //  License along with this library; if not, write to the Free Software
 17 //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 18 
 19 package buaa.act.ucar.moi;
 20 
 21 import java.io.Serializable;
 22 
 23 import gnu.trove.list.array.TFloatArrayList;
 24 import gnu.trove.list.array.TIntArrayList;
 25 
 26 /**
 27  * <p>
 28  * Priority Queue that stores values as ints and priorities as floats. Uses a
 29  * Heap to sort the priorities; the values are sorted "in step" with the
 30  * priorities.
 31  * </p>
 32  * <p>
 33  * A Heap is simply an array that is kept semi sorted; in particular if the
 34  * elements of the array are arranged in a tree structure; ie
 35  * </p>
 36  * 
 37  * <pre>
 38  *                                   00
 39  *                                 /     \
 40  *                             01          02
 41  *                            /  \        /  \
 42  *                          03    04    05    06
 43  *                          /\    /\    /\    /\
 44  *                        07 08 09 10 11 12 13 14
 45  * </pre>
 46  * <p>
 47  * then each parent is kept sorted with respect to it's immediate children. E.g.
 48  * 00 < 01, 00 < 02, 02 < 05, 02 < 06
 49  * </p>
 50  * <p>
 51  * This means that the array appears to be sorted, as long as we only ever look
 52  * at element 0.
 53  * </p>
 54  * <p>
 55  * Inserting new elements is much faster than if the entire array was kept
 56  * sorted; a new element is appended to the array, and then recursively swapped
 57  * with each parent to maintain the "parent is sorted w.r.t it's children"
 58  * property.
 59  * </p>
 60  * <p>
 61  * To return the "next" value it is necessary to remove the root element. The
 62  * last element in the array is placed in the root of the tree, and is
 63  * recursively swapped with one of it's children until the "parent is sorted
 64  * w.r.t it's children" property is restored.
 65  * </p>
 66  * <p>
 67  * Random access is slow (eg for deleting a particular value), and is not
 68  * implemented here - if this functionality is required, then a heap probably
 69  * isn't the right data structure.
 70  * </p>
 71  */
 72 public class PriorityQueue implements Serializable {
 73     private static final long serialVersionUID = -5653506138757217673L;
 74     public static final boolean SORT_ORDER_ASCENDING = true;
 75     public static final boolean SORT_ORDER_DESCENDING = false;
 76 
 77     private TIntArrayList values = null;
 78     private TFloatArrayList priorities = null;
 79     private boolean sortOrder = SORT_ORDER_ASCENDING;
 80 
 81     private static boolean INTERNAL_CONSISTENCY_CHECKING = false;
 82 
 83     public PriorityQueue(boolean sortOrder) {
 84         this(sortOrder, 10);
 85     }
 86 
 87     public PriorityQueue(boolean sortOrder, int initialCapacity) {
 88         this.sortOrder = sortOrder;
 89         values = new TIntArrayList(initialCapacity);
 90         priorities = new TFloatArrayList(initialCapacity);
 91     }
 92 
 93     /**
 94      * @param p1
 95      * @param p2
 96      * @return true if p1 has an earlier sort order than p2.
 97      */
 98     private boolean sortsEarlierThan(float p1, float p2) {
 99         if (sortOrder == SORT_ORDER_ASCENDING) {
100             return p1 < p2;
101         }
102         return p2 < p1;
103     }
104 
105     // to insert a value, append it to the arrays, then
106     // reheapify by promoting it to the correct place.
107     public void insert(int value, float priority) {
108         values.add(value);
109         priorities.add(priority);
110 
111         promote(values.size() - 1, value, priority);
112     }
113 
114     private void promote(int index, int value, float priority) {
115         // Consider the index to be a "hole"; i.e. don't swap priorities/values
116         // when moving up the tree, simply copy the parent into the hole and
117         // then consider the parent to be the hole.
118         // Finally, copy the value/priority into the hole.
119         while (index > 0) {
120             int parentIndex = (index - 1) / 2;
121             float parentPriority = priorities.get(parentIndex);
122 
123             if (sortsEarlierThan(parentPriority, priority)) {
124                 break;
125             }
126 
127             // copy the parent entry into the current index.
128             values.set(index, values.get(parentIndex));
129             priorities.set(index, parentPriority);
130             index = parentIndex;
131         }
132 
133         values.set(index, value);
134         priorities.set(index, priority);
135 
136         if (INTERNAL_CONSISTENCY_CHECKING) {
137             check();
138         }
139     }
140 
141     public int size() {
142         return values.size();
143     }
144 
145     public void clear() {
146         values.clear();
147         priorities.clear();
148     }
149 
150     public void reset() {
151         values.reset();
152         priorities.reset();
153     }
154 
155     public int getValue() {
156         return values.get(0);
157     }
158 
159     public float getPriority() {
160         return priorities.get(0);
161     }
162 
163     private void demote(int index, int value, float priority) {
164         int childIndex = (index * 2) + 1; // left child
165 
166         while (childIndex < values.size()) {
167             float childPriority = priorities.get(childIndex);
168 
169             if (childIndex + 1 < values.size()) {
170                 float rightPriority = priorities.get(childIndex + 1);
171                 if (sortsEarlierThan(rightPriority, childPriority)) {
172                     childPriority = rightPriority;
173                     childIndex++; // right child
174                 }
175             }
176 
177             if (sortsEarlierThan(childPriority, priority)) {
178                 priorities.set(index, childPriority);
179                 values.set(index, values.get(childIndex));
180                 index = childIndex;
181                 childIndex = (index * 2) + 1;
182             } else {
183                 break;
184             }
185         }
186 
187         values.set(index, value);
188         priorities.set(index, priority);
189     }
190 
191     // get the value with the lowest priority
192     // creates a "hole" at the root of the tree.
193     // The algorithm swaps the hole with the appropriate child, until
194     // the last entry will fit correctly into the hole (ie is lower
195     // priority than its children)
196     public int pop() {
197         int ret = values.get(0);
198 
199         // record the value/priority of the last entry
200         int lastIndex = values.size() - 1;
201         int tempValue = values.get(lastIndex);
202         float tempPriority = priorities.get(lastIndex);
203 
204         values.removeAt(lastIndex);
205         priorities.removeAt(lastIndex);
206 
207         if (lastIndex > 0) {
208             demote(0, tempValue, tempPriority);
209         }
210 
211         if (INTERNAL_CONSISTENCY_CHECKING) {
212             check();
213         }
214 
215         return ret;
216     }
217 
218     public void setSortOrder(boolean sortOrder) {
219         if (this.sortOrder != sortOrder) {
220             this.sortOrder = sortOrder;
221             // reheapify the arrays
222             for (int i = (values.size() / 2) - 1; i >= 0; i--) {
223                 demote(i, values.get(i), priorities.get(i));
224             }
225         }
226         if (INTERNAL_CONSISTENCY_CHECKING) {
227             check();
228         }
229     }
230 
231     private void check() {
232         // for each entry, check that the child entries have a lower or equal
233         // priority
234         int lastIndex = values.size() - 1;
235 
236         for (int i = 0; i < values.size() / 2; i++) {
237             float currentPriority = priorities.get(i);
238 
239             int leftIndex = (i * 2) + 1;
240             if (leftIndex <= lastIndex) {
241                 float leftPriority = priorities.get(leftIndex);
242                 if (sortsEarlierThan(leftPriority, currentPriority)) {
243                     System.err.println("Internal error in PriorityQueue");
244                 }
245             }
246 
247             int rightIndex = (i * 2) + 2;
248             if (rightIndex <= lastIndex) {
249                 float rightPriority = priorities.get(rightIndex);
250                 if (sortsEarlierThan(rightPriority, currentPriority)) {
251                     System.err.println("Internal error in PriorityQueue");
252                 }
253             }
254         }
255     }
256 }
View Code

 

posted @ 2017-02-17 15:48  March On  阅读(489)  评论(0编辑  收藏  举报
top last
Welcome user from
(since 2020.6.1)