PossibleOrders TopCoder - 1643
分析
先用并查集将所有相等元素连为一个,得到不同的元素共cnt种,之后我们的任务便转化为将这些元素分为k组(k≤cnt),所以我们不难得出dp式:dpij=dpi-1j-1*j+dpi-1j*j
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
#define sp cout<<"---------------------------------------------------"<<endl;
long long dp[50][50];int cnt,fa[1000];
class PossibleOrders{
public:
int sf(int x){return fa[x]==x?x:fa[x]=sf(fa[x]);}
void work(string s){
int i,k=0,x=0,y=0,n=s.length();
for(i=0;i<n;i++)
if(s[i]=='=')k++;
else if(!k)x=(x<<3)+(x<<1)+(s[i]-'0');
else y=(y<<3)+(y<<1)+(s[i]-'0');
if(sf(x)!=sf(y)){
cnt--;
fa[sf(x)]=sf(y);
}
return;
}
long long howMany(int num,vector<string>facts){
int i,j,n=num;
long long ans=0;
cnt=n;
for(i=0;i<n;i++)fa[i]=i;
for(i=0;i<facts.size();i++)work(facts[i]);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
dp[i][j]=0;
dp[0][0]=1;
for(i=1;i<=cnt;i++)
for(j=1;j<=cnt;j++)
dp[i][j]=dp[i-1][j-1]*j+dp[i-1][j]*j;
for(i=1;i<=cnt;i++)ans+=dp[cnt][i];
return ans;
}
};