AGC037C Numbers on a Circle
题目大意
给你一个序列a和序列b
每次操作是a[i]+=a[i-1]+a[i+1]
问a经过最少几次操作可以得到b
分析
用堆维护a
每次取出最大的
撤销操作直到不能撤销
将新数放入堆
不断维护即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define int long long
priority_queue<pair<int,int> >q;
int n,m,b[200100],a[200100],pre[200100],nxt[200100];
signed main(){
int i,j,k,ans=0;
scanf("%lld",&n);
for(i=1;i<=n;i++)scanf("%lld",&a[i]);
for(i=1;i<=n;i++){
scanf("%lld",&b[i]);
q.push(mp(b[i],i));
}
for(i=1;i<=n;i++){
nxt[i]=i+1;
pre[i]=i-1;
}
pre[1]=n;
nxt[n]=1;
while(!q.empty()){
int x=q.top().se;
q.pop();
if(b[x]==a[x])continue;
int y=pre[x],z=nxt[x];
if(b[x]-b[y]-b[z]<a[x]){
puts("-1");
return 0;
}
k=b[x]-a[x];
ans+=k/(b[y]+b[z]);
b[x]=(k%(b[y]+b[z]))+a[x];
if(a[x]!=b[x])q.push(mp(b[x],x));
}
cout<<ans<<"\n";
return 0;
}