画贝塞尔曲线
在Delph下调用PolyBezier();
procedure TForm1.Button1Click(Sender: TObject);
var point:array[0..6] of Tpoint;
h:HDC;
begin
h:=getdc(form1.handle);
point[0].x:=25; point[0].y:=25;
point[1].x:=35; point[1].y:=170;
point[2].x:=130;point[2].y:=120;
point[3].x:=150;point[3].y:=150;
point[4].x:=170;point[4].y:=280;
point[5].x:=250;point[5].y:=115;
point[6].x:=250;point[6].y:=225;
polybezier(h,point,7);
end;
PolyBezier 画一系列相连的曲线,每一段包含4个point,第一点是曲线起点,
第二点,第三点指定曲线形状的控制点,第四点是曲线终点。
本例中,1为起点,4为中点,7为终点,2,3,5,6为控制点。
OR 调用canvas.polybezier();
*** Drawing CURVES in Delphi? ***
Solution 1
From: dmitrys@phyast.la.asu.edu (Dmitry Streblechenko)
In article <4uijv6$kf7@newsbf02.news.aol.com,
gtabsoft2@aol.com (GTABSoft2) wrote:
Does anyone have source code or info on drawing Bezier curves? I must have
it for my component. Please respond to my email address.
I did this some time ago; I was too lazy to learn how to draw Bezier curves using Win API, so I did it using Polyline().
Note I used floating type values for points coordinates, (I used some kind of virtual screen), just change them to integer.
--------------------------------------------------------------------------------
PBezierPoint = ^TBezierPoint;
TBezierPoint = record
X,Y:double; //main node
Xl,Yl:double; //left control point
Xr,Yr:double; //right control point
end;
//P1 and P2 are two TBezierPoint's, t is between 0 and 1:
//when t=0 X=P1.X, Y=P1.Y; when t=1 X=P2.X, Y=P2.Y;
procedure BezierValue(P1,P2:TBezierPoint; t:double; var X,Y:double);
var t_sq,t_cb,r1,r2,r3,r4:double;
begin
t_sq := t * t;
t_cb := t * t_sq;
r1 := (1 - 3*t + 3*t_sq - t_cb)*P1.X;
r2 := ( 3*t - 6*t_sq + 3*t_cb)*P1.Xr;
r3 := ( 3*t_sq - 3*t_cb)*P2.Xl;
r4 := ( t_cb)*P2.X;
X := r1 + r2 + r3 + r4;
r1 := (1 - 3*t + 3*t_sq - t_cb)*P1.Y;
r2 := ( 3*t - 6*t_sq + 3*t_cb)*P1.Yr;
r3 := ( 3*t_sq - 3*t_cb)*P2.Yl;
r4 := ( t_cb)*P2.Y;
Y := r1 + r2 + r3 + r4;
end;
--------------------------------------------------------------------------------
To draw Bezier curve, split interval between P1 and P2 into several intervals based on how coarse you want your Bezier curve look (3 - 4 pixels looks Ok), then in a loop create an array of points using procedure above with t from 0 to 1 and draw that array of points using polyline().
Solution 2
From: saconn@iol.ie (Stephen Connolly)
gtabsoft2@aol.com (GTABSoft2) wrote:
Does anyone have source code or info on drawing Bezier curves? I must have
it for my component. Please respond to my email address.
I'm posting this here - 'cause: 1. I've seen people ask for this before, 2. The reference is so old I just had to. (BTW I have older references than this ;-P)
I'm sure that there is a standard Borland disclaimer to go with this:
--------------------------------------------------------------------------------
(********************************************************************)
(* GRAPHIX TOOLBOX 4.0 *)
(* Copyright (c) 1985, 87 by Borland International, Inc. *)
(********************************************************************)
unit GShell;
interface
{-------------------------------- snip ----------------------------}
procedure Bezier(A : PlotArray; MaxContrPoints : integer;
var B : PlotArray; MaxIntPoints : integer);
implementation
{-------------------------------- snip ---------------------------}
procedure Bezier{(A : PlotArray; MaxContrPoints : integer;
var B : PlotArray; MaxIntPoints : integer)};
const
MaxControlPoints = 25;
type
CombiArray = array[0..MaxControlPoints] of Float;
var
N : integer;
ContrPoint, IntPoint : integer;
T, SumX, SumY, Prod, DeltaT, Quot : Float;
Combi : CombiArray;
begin
MaxContrPoints := MaxContrPoints - 1;
DeltaT := 1.0 / (MaxIntPoints - 1);
Combi[0] := 1;
Combi[MaxContrPoints] := 1;
for N := 0 to MaxContrPoints - 2 do
Combi[N + 1] := Combi[N] * (MaxContrPoints - N) / (N + 1);
for IntPoint := 1 to MaxIntPoints do
begin
T := (IntPoint - 1) * DeltaT;
if T <= 0.5 then
begin
Prod := 1.0 - T;
Quot := Prod;
for N := 1 to MaxContrPoints - 1 do
Prod := Prod * Quot;
Quot := T / Quot;
SumX := A[MaxContrPoints + 1, 1];
SumY := A[MaxContrPoints + 1, 2];
for N := MaxContrPoints downto 1 do
begin
SumX := Combi[N - 1] * A[N, 1] + Quot * SumX;
SumY := Combi[N - 1] * A[N, 2] + Quot * SumY;
end;
end
else
begin
Prod := T;
Quot := Prod;
for N := 1 to MaxContrPoints - 1 do
Prod := Prod * Quot;
Quot := (1 - T) / Quot;
SumX := A[1, 1];
SumY := A[1, 2];
for N := 1 to MaxContrPoints do
begin
SumX := Combi[N] * A[N + 1, 1] + Quot * SumX;
SumY := Combi[N] * A[N + 1, 2] + Quot * SumY;
end;
end;
B[IntPoint, 1] := SumX * Prod;
B[IntPoint, 2] := SumY * Prod;
end;
end; { Bezier }
end. { GShell }