【题解】Luogu P2257 YY的GCD

原题传送门

这题需要运用莫比乌斯反演(懵逼钨丝繁衍)

显然题目的答案就是$$ Ans=\sum_{i=1}N\sum_{j=1}M[gcd(i,j)=prime]$$

我们先设设F(n)表示满足\(gcd(i,j)\%t=0\)的数对个数,f(t)表示满足\(gcd(i,j)=t\)的数对个数

$$f(t)=\sum_{i=1}N\sum_{j=1}M[gcd(i,j)=t]$$

$$F(n)=\sum_{n|t}\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$$

那么根据莫比乌斯反演的第二种形式珂以得到

$$f(n)=\sum_{n|t}\mu(\lfloor \frac{t}{n} \rfloor)F(t)$$

所以答案珂以变形为:

$$Ans=\sum_{p \in prime}\sum_{i=1}N\sum_{j-1}M[gcd(i,j)=p)$$

$$=\sum_{p \in prime}f(p) \qquad \qquad \quad$$

$$=\sum_{p \in prime}\sum_{p|t}\mu(\lfloor \frac{t}{p} \rfloor)F(t)$$

我们不枚举p,我们枚举\(\lfloor \frac{t}{p} \rfloor\)

$$Ans=\sum_{p \in prime}\sum_{d=1}^{Min(\frac{N}{p},\frac{M}{p})}\mu(t)F(tp)$$

$$\qquad \qquad \qquad=\sum_{p \in prime}\sum_{d=1}^{Min(\frac{N}{p},\frac{M}{p})}\mu(t)\sum_{n|t}\lfloor \frac{N}{tp} \rfloor \lfloor \frac{M}{tp} \rfloor$$

我们把tp换成T继续变形

$$Ans=\sum_{T=1}^{Min(N,M)}\lfloor \frac{N}{T} \rfloor \lfloor \frac{M}{T} \rfloor(\sum_{p|T,p \in prime}\mu(\frac{T}{p}))$$

这样就珂以用整除分块求了qaq

#include <bits/stdc++.h>
#define N 10000005
#define ll long long 
#define getchar nc
using namespace std;
inline char nc(){
    static char buf[100000],*p1=buf,*p2=buf; 
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++; 
}
inline int read()
{
    register int x=0,f=1;register char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return x*f;
}
inline void write(register ll x)
{
    if(!x)putchar('0');if(x<0)x=-x,putchar('-');
    static int sta[30];register int tot=0;
    while(x)sta[tot++]=x%10,x/=10;
    while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int x,register int y)
{
    return x<y?x:y;
}
int v[N],miu[N],prim[N],cnt=0,g[N];
ll sum[N];
int main()
{
    miu[1]=1;
    for(register int i=2;i<=N;++i)
    {
        if(!v[i])
        {
        	miu[i]=-1;
        	prim[++cnt]=i;
		}
		for(register int j=1;j<=cnt&&prim[j]*i<=N;++j)
		{
			v[i*prim[j]]=1;
			if(i%prim[j]==0)
				break;
			else
				miu[prim[j]*i]=-miu[i];
		}
    }
    for(register int i=1;i<=cnt;++i)
    	for(register int j=1;j*prim[i]<=N;++j)
    		g[j*prim[i]]+=miu[j];
    for(register int i=1;i<=N;++i)
        sum[i]=sum[i-1]+(ll)g[i];
    int t=read();
    while(t--)
    {
    	int n=read(),m=read();
    	if(n>m)
    		n^=m^=n^=m;
    	ll ans=0;
    	for(register int l=1,r;l<=n;l=r+1)
    	{
    		r=Min(n/(n/l),m/(m/l));
    		ans+=(ll)(n/l)*(m/l)*(sum[r]-sum[l-1]);
		}
		write(ans),puts("");
	}
    return 0;
}
posted @ 2018-12-17 22:36  JSOI爆零珂学家yzhang  阅读(188)  评论(0编辑  收藏  举报