Python进程
1. 进程以及状态
1.1 进程
程序:例如xxx.py这是程序,是一个静态的
进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。
不仅可以通过线程完成多任务,进程也是可以的
1.2 进程的状态
工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态
- 就绪态:运行的条件都已经慢去,正在等在cpu执行
- 执行态:cpu正在执行其功能
- 等待态:等待某些条件满足,例如一个程序sleep了,此时就处于等待态
2. 进程的创建
multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情
2.1 2个while循环一起执行
from multiprocessing import Process import time def run_proc(): """子进程要执行的代码""" while True: print("----2----") time.sleep(1) if __name__=='__main__': p = Process(target=run_proc) p.start() while True: print("----1----") time.sleep(1)
说明
- 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动
2.2 进程pid
from multiprocessing import Process import os import time def run_proc(): """子进程要执行的代码""" print('pid=%d' % os.getpid()) # os.getpid获取当前子进程的进程号 print('ppid=%d' % os.getppid()) # os.getpid获取当前子进程的父进程号 print('子进程将要结束') if __name__ == '__main__': print('当前进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号 print('父进程ppid: %d' % os.getppid()) # os.getpid获取当前进程的父进程号,就是任务管理器的pid p = Process(target=run_proc) p.start() print('父进程将要结束') # 当前进程pid: 17160 # 父进程ppid: 1684 # 父进程将要结束 # pid=17140 # ppid=17160 # 子进程将要结束
2.3 Process语法结构如下:
Process([group [, target [, name [, args [, kwargs]]]]])
- target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
- args:给target指定的函数传递的参数,以元组的方式传递
- kwargs:给target指定的函数传递命名参数
- name:给进程设定一个名字,可以不设定
- group:指定进程组,大多数情况下用不到
Process创建的实例对象的常用方法:
- start():启动子进程实例(创建子进程)
- is_alive():判断进程子进程是否还在活着
- join([timeout]):是否等待子进程执行结束,或等待多少秒
- terminate():不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:
- name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
- pid:当前进程的pid(进程号)
2.4 给子进程指定的函数传递参数
from multiprocessing import Process import os from time import sleep def run_proc(name, age, **kwargs): for i in range(10): print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid())) print(kwargs) sleep(0.2) if __name__=='__main__': p = Process(target=run_proc, args=('test',18), kwargs={"m":20}) p.start() sleep(1) # 1秒中之后,立即结束子进程 p.terminate() p.join()
运行结果:
子进程运行中,name= test,age=18 ,pid=45097... {'m': 20} 子进程运行中,name= test,age=18 ,pid=45097... {'m': 20} 子进程运行中,name= test,age=18 ,pid=45097... {'m': 20} 子进程运行中,name= test,age=18 ,pid=45097... {'m': 20} 子进程运行中,name= test,age=18 ,pid=45097... {'m': 20}
2.5 进程间不同享全局变量
from multiprocessing import Process import os import time nums = [11, 22] def work1(): """子进程要执行的代码""" print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums)) for i in range(3): nums.append(i) time.sleep(1) print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums)) def work2(): """子进程要执行的代码""" print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums)) if __name__ == '__main__': p1 = Process(target=work1) p1.start() p1.join() p2 = Process(target=work2) p2.start()
运行结果:
in process1 pid=11349 ,nums=[11, 22] in process1 pid=11349 ,nums=[11, 22, 0] in process1 pid=11349 ,nums=[11, 22, 0, 1] in process1 pid=11349 ,nums=[11, 22, 0, 1, 2] in process2 pid=11350 ,nums=[11, 22]
3. 进程、线程对比
3.1 功能
- 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
- 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口
3.2 定义的不同
-
进程是系统进行资源分配和调度的一个独立单位.
-
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.
3.3 区别
- 一个程序至少有一个进程,一个进程至少有一个线程.
- 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
- 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
- 线线程不能够独立执行,必须依存在进程中
- 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人
3.4 优缺点
线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。
4. 进程间通信-Queue
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
4.1 Queue的使用
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
#coding=utf-8 from multiprocessing import Queue q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息 q.put("消息1") q.put("消息2") print(q.full()) #False q.put("消息3") print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常 try: q.put("消息4",True,2) except: print("消息列队已满,现有消息数量:%s"%q.qsize()) try: q.put_nowait("消息4") except: print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入 if not q.full(): q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取 if not q.empty(): for i in range(q.qsize()): print(q.get_nowait()) #运行结果 False True 消息列队已满,现有消息数量:3 消息列队已满,现有消息数量:3 消息1 消息2 消息3
说明
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
-
Queue.qsize():返回当前队列包含的消息数量;
-
Queue.empty():如果队列为空,返回True,反之False ;
-
Queue.full():如果队列满了,返回True,反之False;
-
Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
-
Queue.get_nowait():相当Queue.get(False);
-
Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
- Queue.put_nowait(item):相当Queue.put(item, False);
4.2 Queue实例
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in ['A', 'B', 'C']: print('Put %s to queue...' % value) q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(True) print('Get %s from queue.' % value) time.sleep(random.random()) else: break if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 等待pw结束: pw.join() # 启动子进程pr,读取: pr.start() pr.join() # pr进程里是死循环,无法等待其结束,只能强行终止: print('') print('所有数据都写入并且读完')
5. 进程池Pool
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:
from multiprocessing import Pool import os, time, random def worker(msg): t_start = time.time() print("%s开始执行,进程号为%d" % (msg,os.getpid())) # random.random()随机生成0~1之间的浮点数 time.sleep(random.random()*2) t_stop = time.time() print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start)) po = Pool(3) # 定义一个进程池,最大进程数3 for i in range(0,10): # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,)) # 每次循环将会用空闲出来的子进程去调用目标 po.apply_async(worker,(i,)) print("----start----") po.close() # 关闭进程池,关闭后po不再接收新的请求 po.join() # 等待po中所有子进程执行完成,必须放在close语句之后 print("-----end-----") #运行结果: ----start---- 0开始执行,进程号为21466 1开始执行,进程号为21468 2开始执行,进程号为21467 0 执行完毕,耗时1.01 3开始执行,进程号为21466 2 执行完毕,耗时1.24 4开始执行,进程号为21467 3 执行完毕,耗时0.56 5开始执行,进程号为21466 1 执行完毕,耗时1.68 6开始执行,进程号为21468 4 执行完毕,耗时0.67 7开始执行,进程号为21467 5 执行完毕,耗时0.83 8开始执行,进程号为21466 6 执行完毕,耗时0.75 9开始执行,进程号为21468 7 执行完毕,耗时1.03 8 执行完毕,耗时1.05 9 执行完毕,耗时1.69 -----end-----
multiprocessing.Pool常用函数解析:
- apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
- close():关闭Pool,使其不再接受新的任务;
- terminate():不管任务是否完成,立即终止;
- join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
5. 1 进程池中的Queue
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
# 修改import中的Queue为Manager from multiprocessing import Manager,Pool import os,time,random def reader(q): print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid())) for i in range(q.qsize()): print("reader从Queue获取到消息:%s" % q.get(True)) def writer(q): print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid())) for i in "itcast": q.put(i) if __name__=="__main__": print("(%s) start" % os.getpid()) q = Manager().Queue() # 使用Manager中的Queue po = Pool() po.apply_async(writer, (q,)) time.sleep(1) # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据 po.apply_async(reader, (q,)) po.close() po.join() print("(%s) End" % os.getpid()) # 运行结果: (11095) start writer启动(11097),父进程为(11095) reader启动(11098),父进程为(11095) reader从Queue获取到消息:i reader从Queue获取到消息:t reader从Queue获取到消息:c reader从Queue获取到消息:a reader从Queue获取到消息:s reader从Queue获取到消息:t (11095) End