SRM471

250pt:

 题意:定义一种函数f(x),表示x不断/2直到出现非素数的操作次数。现在给定N,D。求X<= N, 并且f(x) >= D的最大的数

 思路:直接先弄一个1000w以内的质数表,然后直接dp。由于题目给定内存才64M。。所以没法开1000w的int数组 

        所以dp时我直接对每个素数做。dp[i]表示以第i个质数结尾的f值。。

code:

  

复制代码
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;

#define PB push_back
#define MP make_pair

#define REP(i,n) for(i=0;i<(n);++i)
#define FOR(i,l,h) for(i=(l);i<=(h);++i)
#define FORD(i,h,l) for(i=(h);i>=(l);--i)

typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
bool vis[10000010];
vector<int> P;
int dp[1000000];
class PrimeSequences
{
        public:
        void getPrime(int n){
              P.clear();
              for (int i = 2; i <= n; ++i){
                   if (vis[i]) continue;
                   P.push_back(i);
                   for (int j = i * 2;  j <= n; j += i)
                      vis[j] = true;
              }

        }
        int getLargestGenerator(int N, int D)
        {
                 getPrime(N);
                 int n = P.size();
                 int p, x;
                 int ans = 0;
                 for (int i = 0; i < n; ++i){
                       x = (P[i] >> 1);
                       p = lower_bound(P.begin(), P.end(), x) - P.begin();
                       if (x == P[p]) dp[i] = dp[p] + 1;
                       else dp[i] = 1;
                       ans = max(dp[i], ans);
                 }
                 if (ans < D) return -1;
                 for (int i = n-1; i >= 0; --i)
                     if (dp[i] >= D) return P[i];
                 return -1;
        }

};
复制代码

500pt:

题意:题目给了最多n(n <= 25)个点的有向图,编号0~n-1, 现在求一条0号点到n-1点的最短路,并且该最短路上任意两点距离不为13倍数。

思路:很明显的动态规划。

        后面改成3维dp[i][j][k],表示到达点i,从起点到点i所有路径%13的集合为j,并且此时最短路%13为k时的最短路。

        那么转移就很明显了。。

       不过此题很容易想入非非了,刚开始就是用2维写错了。少枚举了第三维。直接用最短路%13作为第三维。。

       这样的结果就可能导致当前最优而后面不一定最优。。

code:

复制代码
 1 #line 7 "ThirteenHard.cpp"
 2 #include <cstdlib>
 3 #include <cctype>
 4 #include <cstring>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <algorithm>
 8 #include <vector>
 9 #include <string>
10 #include <iostream>
11 #include <sstream>
12 #include <map>
13 #include <set>
14 #include <queue>
15 #include <stack>
16 #include <fstream>
17 #include <numeric>
18 #include <iomanip>
19 #include <bitset>
20 #include <list>
21 #include <stdexcept>
22 #include <functional>
23 #include <utility>
24 #include <ctime>
25 using namespace std;
26 
27 #define PB push_back
28 #define MP make_pair
29 #define Inf 0xfffffff
30 #define REP(i,n) for(i=0;i<(n);++i)
31 #define FOR(i,l,h) for(i=(l);i<=(h);++i)
32 #define FORD(i,h,l) for(i=(h);i>=(l);--i)
33 #define two(i) (1 << i)
34 typedef vector<int> VI;
35 typedef vector<string> VS;
36 typedef vector<double> VD;
37 typedef long long LL;
38 typedef pair<int,int> PII;
39 struct oo{
40        int x, y, z;
41        oo(){}
42        oo(int _x, int _y, int _z):x(_x), y(_y), z(_z){}
43 };
44 int dp[26][1 << 14][15];
45 bool vis[26][1 << 14][15];
46 class ThirteenHard
47 {
48         public:
49         int g[30][30], n;
50         int calcTime(vector <string> s)
51         {
52              n = s.size();
53              for (int i = 0; i < n; ++i)
54                 for (int j = 0; j < n; ++j){
55                      if (s[i][j] == '#') g[i][j] = Inf;
56                      if (s[i][j] >= 'A' && s[i][j] <= 'Z') g[i][j] = s[i][j] - 'A' + 1;
57                      if (s[i][j] >= 'a' && s[i][j] <= 'z') g[i][j] = s[i][j] - 'a' + 27;
58                 }
59              memset(dp, -1, sizeof(dp));
60              memset(vis, 0, sizeof(vis));
61              dp[0][1][0] = 0;
62              queue<oo> q;
63              q.push(oo(0,1,0));
64              int x, y, z;
65              vis[0][1][0] = true;
66              oo cur;
67              while (!q.empty()){
68                    cur = q.front();
69                    for (int i = 0; i < n; ++i) if (g[cur.x][i] < Inf){
70                             z = (cur.z + g[cur.x][i]) % 13;
71                             if (two(z) & cur.y) continue;
72                             y = (cur.y | two(z));
73                             x = i;
74                             if (dp[x][y][z] == -1 || dp[x][y][z] > dp[cur.x][cur.y][cur.z] + g[cur.x][x]){
75                                   dp[x][y][z] = dp[cur.x][cur.y][cur.z] + g[cur.x][x];
76                                   if (!vis[x][y][x]){
77                                        vis[x][y][z] = true;
78                                        q.push(oo(x, y, z));
79                                   }
80                             }
81                    }
82                    q.pop();
83                    vis[cur.x][cur.y][cur.z] = false;
84              }
85              int ans = -1;
86              for (int i = 0; i < two(13); ++i)
87                  for (int j = 0; j < 13; ++j)
88                     if (dp[n-1][i][j] > -1)
89                        if (ans == -1 || dp[n-1][i][j] < ans) ans = dp[n-1][i][j];
90              return ans;
91         }
92 
93 };
View Code
复制代码

 

  

 

posted on   yzcstc  阅读(187)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示