莫反进阶小记

lhl 的课。

莫反进阶小记

两个处理乘积的式子

\[d(ij)=\sum_{x|i}\sum_{y|j} [\gcd(x,y)=1]=\sum_{x|i}\sum_{y|j} \sum_{d|x,d|y} \mu(d)=\sum_{d|i,d|j} \mu(d)d(\frac{i}{d})d(\frac{j}{d}) \]

\[\phi(ij)=\frac{\phi(i)\phi(j)\gcd(i,j)}{\phi(\gcd(i,j))} \]

证明方法:利用积性在 \(p^k\) 处证明即可。

\(\prod\) 的处理技巧

\[ans=\prod_{i\in A} \prod_{j\in B_i} a_{i,j} \iff \ln(ans)=\sum_{i\in A} \sum_{j\in B_i} \ln(a_{i,j}) \]

牵连的世界

\[\begin{aligned} ans&=\sum_{i=1}^n \sum_{j=1}^m d(ij)\phi(ij)\\ &=\sum_{i=1}^n \sum_{j=1}^m \frac{\phi(i)\phi(j)\gcd(i,j)}{\phi(\gcd(i,j))} \sum_{x|i} \sum_{y|j} \sum_{d|x,d|y} \mu(d)\\ &=\sum_{d=1}^{\min(n,m)} \mu(d) \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} d(i)d(j) \frac{\phi(i)\phi(j)\gcd(i,j)}{\phi(\gcd(i,j))} \\ &=\sum_{d=1}^{\min(n,m)} \mu(d)d \sum_{g=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor} \frac{g}{\phi(gd)} \sum_{i=1}^{\lfloor\frac{n}{dg}\rfloor}\phi(idg)d(idg)\sum_{j=1}^{\lfloor\frac{m}{dg}\rfloor} \phi(jdg)d(jdg) \sum_{s|i,s|j} \mu(s)\\ &=\sum_{d=1}^{\min(n,m)} \mu(d)d \sum_{g=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor} \frac{g}{\phi(gd)} \sum_{s=1}^{\lfloor\frac{\min(n,m)}{gd}\rfloor} \mu(s) \sum_{i=1}^{\lfloor\frac{n} {dgs}\rfloor}\phi(idgs)d(igs)\sum_{j=1}^{\lfloor\frac{m}{dgs}\rfloor} \phi(jdgs)d(jgs) \end{aligned} \]

\[A(x,y)=\sum_{xyz\leq n} \phi(xyz)d(yz)\\ B(x,y)=\sum_{xyz\leq m} \phi(xyz)d(yz)\\ ans=\sum_{dgs\leq \min(n,m)} \mu(d)\frac{gd}{\phi(gd)}\mu(s)A(d,gs)B(d,gs) \]

\((x,y,z)\) 满足 \(xyz\leq n\) 的个数在 \(O(n\log^2 n)\) 级别,暴力算这些东西就可以了。

存在 \(O(n\log n\log\log n)\) 狄利克雷后缀和做法。

具体地,发现

\[A(x,y)=\sum_{x}\sum_{y} \sum_{y|z} \phi(z)d(xz) \]

枚举 \(x\) 做后缀和就可以了。

对于 \(ans\),枚举 \(gd\) 做后缀和求出 \(\frac{gd}{\phi(gd)}\)

\(ans\) 包含一个 \(\mu(s)\) 的项,看起来不好枚举 \(gs\),但你枚举 \(p=gs\),然后写 \(\mu(s)=\mu(\frac{p}{g})\),由于 \(\mu\) 在狄利克雷的意义下类似于集合中的 \((-1)^{|S|}\) ,所以 \(f_x=\sum_{x|y} g_y\mu(\frac{y}{x})\) 就是高维差分,也可以类似 \(FWT\) 快速计算。

简单题

\[\begin{aligned} ans&=\sum_{i=1}^n \sum_{j=1}^n (i+j)^k\mu^2(\gcd(i,j))\gcd(i,j)\\ &=\sum_{g=1}^n \sum_{i=1}^n \sum_{j=1}^n [\gcd(i,j)=g](i+j)^k\mu^2(g)g\\ &=\sum_{g=1}^n \mu^2(g)g^{k+1} \sum_{i=1}^{\lfloor \frac{n}{g}\rfloor} \sum_{j=1}^{\lfloor \frac{n}{g}\rfloor} (i+j)^k [\gcd(i,j)=1]\\ &=\sum_{g=1}^n \mu^2(g)g^{k+1} \sum_{i=1}^{\lfloor \frac{n}{g}\rfloor} \sum_{j=1}^{\lfloor \frac{n}{g}\rfloor} (i+j)^k \sum_{d|i,d|j} \mu(d)\\ &=\sum_{g=1}^n \mu^2(g)g^{k+1} \sum_{d=1}^{\lfloor \frac{n}{g}\rfloor} \mu(d)d^k \sum_{i=1}^{\lfloor \frac{n}{gd}\rfloor} \sum_{j=1}^{\lfloor \frac{n}{gd}\rfloor} (i+j)^k\\ &=\sum_{T=1}^n T^k F(\lfloor \frac{n}{T}\rfloor) \sum_{g|T} \mu^2(g) g\mu(\frac{T}{g}) \end{aligned} \]

\[F(n)=\sum_{i=1}^n \sum_{j=1}^n (i+j)^k \]

$(\mu^2 \cdot id) * \mu $ 和 \(i^k\) 可以线筛。

数字表格

\[\begin{aligned} \ln(ans)&=\sum_{i=1}^n \sum_{j=1}^m \ln(f_{\gcd(i,j)})\\ &=\sum_{i=1}^n \sum_{j=1}^m \sum_{g=1}^{\min(i,j)} [\gcd(i,j)=g] \ln(f_g)\\ &=\sum_{g=1}^{\min(n,m)} \ln(f_g) \sum_{i=1}^{\lfloor \frac{n}{g}\rfloor} \sum_{j=1}^{\lfloor \frac{m}{g}\rfloor} \sum_{d|i,d|j} \mu(d)\\ &=\sum_{g=1}^{\min(n,m)} \ln(f_g) \sum_{d=1}^{\min(n,m)} \mu(d) \lfloor\frac{n}{gd}\rfloor \lfloor\frac{m}{gd}\rfloor\\ &=\sum_{T=1}^{\min(n,m)} \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor \sum_{g|T} \ln(f_g) \mu(\frac{T}{g}) \end{aligned} \]

\[ans=\prod_{T=1}^{\min(n,m)} \prod_{g|T} f_g^{\lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor\mu(\frac{T}{g})} \]

幽灵乐团

type=1

\[\begin{aligned} \ln(ans)&=\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C \ln(i)+\ln(j)-\ln(\gcd(i,j))-\ln(\gcd(i,k))\\ &=\sum_{i=1}^A ln(i)+\sum_{j=1}^B \ln(j)-\sum_{i=1}^{A}\sum_{j=1}^B \ln(\gcd(i,j))-\sum_{i=1}^{A}\sum_{k=1}^C \ln(\gcd(i,k)) \end{aligned} \]

\[\begin{aligned} \ln(F(n,m))&=\sum_{i=1}^n \sum_{i=1}^m \ln(\gcd(i,j))\\ &=\sum_{g=1}^{\min(n,m)} \ln(g) \sum_{d=1}^{\min(n,m)} \mu(d) \lfloor \frac{n}{gd}\rfloor \lfloor \frac{m}{gd}\rfloor\\ &=\sum_{T=1}^{\min(n,m)} \lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \sum_{g|T} \ln(g)\mu(\frac{T}{g}) \end{aligned} \]

\[F(n,m)=\prod_{T=1}^{\min(n,m)} (\prod_{g|T} g^{\mu(\frac{T}{g})})^{{\lfloor \frac{n}{T} \rfloor} {\lfloor \frac{m}{T} \rfloor}} \]

\(F\) 可以 \(O(n\log n)\) 计算。

type=2

多了一点系数。

\[\begin{aligned} \ln(G(n,m))&=\sum_{i=1}^n \sum_{i=1}^m \ln(\gcd(i,j))ij\\ &=\sum_{g=1}^{\min(n,m)} g^2 \ln(g) \sum_{d=1}^{\min(n,m)} d^2 \mu(d) s(\lfloor \frac{n}{gd}\rfloor) s(\lfloor \frac{m}{gd}\rfloor)\\ &=\sum_{T=1}^{\min(n,m)} T^2 s(\lfloor \frac{n}{T}\rfloor) s(\lfloor \frac{m}{T}\rfloor) \sum_{g|T} \ln(g)\mu(\frac{T}{g}) \end{aligned} \]

其中 \(s(n)=\frac{n(n+1)}{2}\)。跟 \(F\) 计算方式一样。

type=3

有点意思了。

\[\begin{aligned} \ln(H(n,m,x))&=\sum_{i=1}^n \sum_{i=1}^m \ln(\gcd(i,j))\sum_{k=1}^x \gcd(i,j,k)\\ &=\sum_{g=1}^{\min(n,m)} \ln(g) \sum_{d=1}^{\min(n,m)} \mu(d) \sum_{i=1}^{\lfloor \frac{n}{dg} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{dg} \rfloor} \sum_{k=1}^{x} \gcd(g,k) \\ &=\sum_{T=1}^{\min(n,m)} \lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \sum_{g|T} \ln(g)\mu(\frac{T}{g}) \sum_{k=1}^x \gcd(g,k)\\ &=\sum_{p=1}^{\min(n,m,x)} \lfloor \frac{x}{p}\rfloor \phi(p)\sum_{T=1}^{\lfloor \frac{\min(n,m)}{g}\rfloor} \lfloor \frac{n}{Tp}\rfloor \lfloor \frac{m}{Tp} \rfloor \sum_{g|T} \ln(gp)\mu(\frac{T}{gp})\\ &=\sum_{p=1}^{\min(n,m,x)} \lfloor \frac{x}{p}\rfloor \phi(p) F(\lfloor\frac{n}{p}\rfloor,\lfloor\frac{m}{p}\rfloor) \end{aligned} \]

数论分块套数论分块即可。

posted @ 2023-02-01 20:26  yyyyxh  阅读(33)  评论(0编辑  收藏  举报