K-Means聚类算法学习
K-Means聚类算法的简介:
聚类和分类算法的最大区别在于,分类的目标类别为已知(监督学习),而聚类的目标类别是未知的(无监督),即数据集无标签. K-Means算法(K_均值算法)就是无监督算法之一,与分类、序列标注等任务不同,聚类是在事先并不知道任何样本标签的情况下,通过数据之间的内在关系把样本划分为若干类别,使得同类别样本之间的相似度高,不同类别之间的样本相似度低(即增大类内聚,减少类间距). 简而言之,K-Means算法的原理就是对于给定的样本集,按照样本点之间的距离大小,将样本集划分为K个簇,设法让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· 葡萄城 AI 搜索升级:DeepSeek 加持,客户体验更智能
· 什么是nginx的强缓存和协商缓存
· 一文读懂知识蒸馏