【高手训练】【树状数组】电子速度
<高手训练例题>
正片开始
电子速度
题目
选取显像管的任意一个平面,一开始平面内有\(n\)个电子,初始速度分别为\(v_i\),定义飘升系数为:
\[\sum_{1\leq i \leq j \leq n} |v_i \times v_j|^2(\times表示叉乘)
\]
电子的速度常常会发生变化。也就是说,有两种类型的操作:
• \(1\ \ p\ \ x\ \ y\)将 \(p\) 改为\((x,\ y)\);
• \(2\ \ l\ \ r\)询问 \([l, r]\) 这段区间内的电子的飘升系数。
答案对 \(20170927\) 取模即可。
Solution
观察答案并推导:
\[\begin{aligned}
ans\ &= \sum_{1 \leq i < j \leq n} \mathrm{(x_iy_j - x_jy_i)^2} \\
&=\sum_{1 \leq i < j \leq n} \mathrm{x_i^2y_j^2} + \sum_{1 \leq i < j \leq n} \mathrm{x_j^2y_i^2} - 2\sum_{1 \leq i < j \leq n}\mathrm{x_ix_jy_iy_j}\\
&=\sum_{1 \leq i, j \leq n}\mathrm{[i ≠j]x_i^2y_j^2} - \sum_{1 \leq i,j \leq n}\mathrm{[i ≠ j] (x_iy_i \cdot x_jy_j)} \\
&= (\sum_{i = 1}^{n}\mathrm{x_i^2} \cdot \sum_{i = 1}^{n}\mathrm{y_i^2} - \sum_{i = 1}^{n}\mathrm{(x_i^2y_i^2) })- \mathrm{(\sum_{i = 1}^{n} x_iy_i \cdot \sum_{i = 1}^{n}x_iy_i - \sum_{i = 1}^{n}(x_iy_i)^2)} \\
&=\mathrm{\sum_{i = 1}^{n}x_i^2 \cdot \sum_{i = 1}^{n}y_i^2 - (\sum_{i = 1}^{n} x_iy_i)^2}
\end{aligned}
\]
三个树状数组维护三个值\(\sum_{i = 1}^n x_i^2\) 、 \(\sum_{i = 1}^n y_i^2\) 、 \(\sum_{i = 1}^nx_iy_j\),三个值。这样就可以支持修改操作并快速维护答案了。
\(\mathrm{Code:}\)
#include <bits/stdc++.h>
#define N 1000110
#define mod 20170927
using namespace std;
int n, m;
inline int add(int a, int b) {
if (b < 0)
return (a + b < 0 ? a + b + mod : a + b);
else
return (a + b >= mod ? a + b - mod : a + b);
}// add函数把加减写一起
inline int del(int a, int b) { return a - b < 0 ? a - b + mod : a - b; }
inline int mul(int a, int b) { return 1LL * a * b % mod; }
inline int read() {
int s = 0, w = 1;
char c = getchar();
while ((c > '9' || c < '0') && c != '-') c = getchar();
if (c == '-') w = -1, c = getchar();
while (c <= '9' && c >= '0')
s = (s << 3) + (s << 1) + c - '0', c = getchar();
return s * w;
}
void write(int x) {
if (x < 0) x = ~x + 1, putchar('-');
if (x > 9) write(x / 10);
putchar(x % 10 + 48);
return void();
}
struct vec {
int x, y;
vec() {}
vec(int _x, int _y) {
x = _x;
y = _y;
}
inline vec operator-() { return vec(-x, -y); }
} v[N];
struct BIT {
int a[N], b[N], c[N];
void Inc(int x, vec v, int w) { //w为加&减的处理。
for (; x <= n; x += x & (-x)) {
a[x] = add(a[x], w * mul(v.x, v.x));
b[x] = add(b[x], w * mul(v.y, v.y));
c[x] = add(c[x], w * mul(v.x, v.y));
}
}
int aska(int x) {
int sum = 0;
for (; x; x -= x & (-x)) sum = add(sum, a[x]);
return sum;
}
int askb(int x) {
int sum = 0;
for (; x; x -= x & (-x)) sum = add(sum, b[x]);
return sum;
}
int askc(int x) {
int sum = 0;
for (; x; x -= x & (-x)) sum = add(sum, c[x]);
return sum;
}
int Ask(int l, int r) {
int s1 = del(aska(r), aska(l - 1));
int s2 = del(askb(r), askb(l - 1));
int s3 = del(askc(r), askc(l - 1));
return del(mul(s1, s2), mul(s3, s3));
}
} B;
signed main() {
n = read();
m = read();
for (int i = 1; i <= n; ++i) {
int x = read(), y = read();
v[i] = vec(x, y);
B.Inc(i, v[i], 1);
}
for (int i = 1; i <= m; ++i) {
int opt = read();
if (opt == 1) {
int p = read(), x = read(), y = read();
vec tmp = vec(x, y);
B.Inc(p, v[p], -1);
B.Inc(p, tmp, 1);
v[p] = tmp;
}
if (opt == 2) {
int x = read(), y = read();
write(B.Ask(x, y));
putchar(10);
}
}
return 0;
}