hdu 1003 Max Sum
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
给你一些数字求出一个连续和最大的串 输出最大值
用两个指针指向我们的这个数组(l1 r1 表示 左指针和右指针 )
当这个数之前的和 < 0时 将我们的左指针指向这个数的下一个数
有指针一直跟着数组一直往下走
然后当我们的sum > max
那么改变我们的max 和 我们的左右指正( l , r )
代码见下:
#include <stdio.h> int a[100005]; int main() { int n; int k = 1; scanf("%d",&n); while(n--) { int m; scanf("%d",&m); int i = 0; for(i = 1; i <= m; i++) scanf("%d",&a[i]); int max = -100000; int l= 1,r= 1,l1 = 1,r1 = 1; int sum = 0; for(i = 1; i <= m; i++) { int flag = 0; sum+=a[i]; r1 = i; if(sum > max) { max = sum; r =r1; l = l1; } if(sum < 0) { l1 = i+1; flag = 1; } /*printf("%d %d %d\n",l,r,sum);*/ if(flag) sum = 0; } printf("Case %d:\n",k++); if(n>=1) printf("%d %d %d\n\n",max,l,r); else printf("%d %d %d\n",max,l,r); } return 0; }
yy_room