摘要:
机器学习的数学基础(1)--Dirichlet分布这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结。基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式。它极大地简化了贝叶... 阅读全文
摘要:
支持向量机的优缺点SVM有如下主要几个特点:(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量;(4... 阅读全文
摘要:
二维卷积c代码二维信号的卷积原理请参考另外一篇文章:http://blog.csdn.net/carson2005/article/details/43702241这里直接给出参考代码:[cpp]view plaincopyvoidConv2(int**filter,int**arr,int**re... 阅读全文
摘要:
原文:http://www.cnblogs.com/laov/p/3541414.htmlLinux简介及Ubuntu安装常见指令系统管理命令打包压缩相关命令关机/重启机器Linux管道Linux软件包管理vim使用用户及用户组管理文件权限管理大牛笔记-www.weixuehao.com来自:htt... 阅读全文
摘要:
Logistic回归Part I: 线性回归线性回归很常见,给你一堆点,作出一条直线,尽可能去拟合这些点。对于多维的数据,设特征为xi,设函数h(θ)=θ+θ1x1+θ2x2+....θnxn为拟合的线性函数,其实就是内积,实际上就是y=wTx+b那么如何确定这些θ参数(parament)才能保证拟... 阅读全文
摘要:
Softmax回归Reference:http://ufldl.stanford.edu/wiki/index.php/Softmax_regressionhttp://deeplearning.net/tutorial/logreg.html起源:Logistic的二类分类Softmax回归是Lo... 阅读全文
摘要:
BP神经网络起源:线性神经网络与单层感知器古老的线性神经网络,使用的是单层Rosenblatt感知器。该感知器模型已经不再使用,但是你可以看到它的改良版:Logistic回归。可以看到这个网络,输入->加权->映射->计算分类误差->迭代修改W、b,其实和数学上的回归拟合别无二致。Logistic回... 阅读全文
摘要:
卷积神经网络起源:喵星人的视觉皮层1958 年,一群奇葩的神经科学家把电极插到喵星人的脑子里,去观察视觉皮层的活动。从而推断生物视觉系统是从物体的小部分入手,经过层层抽象,最后拼起来送入处理中心,减少物体判断的可疑性的。这种方法就与BP网络背道而驰。BP网络认为,大脑每个神经元都要感知物体的全部(全... 阅读全文
摘要:
降噪自动编码器(Denoising Autoencoder)起源:PCA、特征提取....随着一些奇怪的高维数据出现,比如图像、语音,传统的统计学-机器学习方法遇到了前所未有的挑战。数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效。数据挖掘?已然挖不出有用的东西。为了解决高维度的问... 阅读全文
摘要:
栈式自动编码器(Stacked AutoEncoder)起源:自动编码器单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾。于是Bengio等人在2007年的 Greedy Layer-Wise Training of Deep Networks中,仿照stacked RBM构成的DBN... 阅读全文