51 Free Data Science Books
51 Free Data Science Books
A great collection of free data science books covering a wide range of topics from Data Science, Business Analytics, Data Mining and Big Data to Machine Learning, Algorithms and Data Science Tools.
Data Science Overviews
- An Introduction to Data Science (Jeffrey Stanton, 2013)
- School of Data Handbook (2015)
- Data Jujitsu: The Art of Turning Data into Product (DJ Patil, 2012)
- Art of Data Science (Roger D. Peng & Elizabeth Matsui, 2015)
Data Scientists Interviews
- The Data Science Handbook (Carl Shan, Henry Wang, William Chen, & Max Song, 2015)
- The Data Analytics Handbook (Brian Liou, Tristan Tao, & Declan Shener, 2015)
How To Build Data Science Teams
- Data Driven: Creating a Data Culture (Hilary Mason & DJ Patil, 2015)
- Building Data Science Teams (DJ Patil, 2011)
- Understanding the Chief Data O€fficer (Julie Steele, 2015)
Data Analysis
- The Elements of Data Analytic Style (Jeff Leek, 2015)
Distributed Computing Tools
- Hadoop: The Definitive Guide (Tom White, 2011)
- Data-Intensive Text Processing with MapReduce (Jimmy Lin & Chris Dyer, 2010)
Data Mining and Machine Learning
- Introduction to Machine Learning (Amnon Shashua, 2008)
- Machine Learning (Abdelhamid Mellouk & Abdennacer Chebira)
- Machine Learning – The Complete Guide (Wikipedia)
- Social Media Mining An Introduction (Reza Zafarani, Mohammad Ali Abbasi, & Huan Liu, 2014)
- Data Mining: Practical Machine Learning Tools and Techniques (Ian H. Witten & Eibe Frank, 2005)
- Mining of Massive Datasets (Jure Leskovec, Anand Rajaraman, & Jeff Ullman, 2014)
- A Programmer’s Guide to Data Mining (Ron Zacharski, 2015)
- Data Mining with Rattle and R (Graham Williams, 2011)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meria Jr., 2014)
- Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More (Matthew A. Russell, 2014)
- Probabilistic Programming & Bayesian Methods for Hackers (Cam Davidson-Pilon, 2015)
- Data Mining Techniques For Marketing, Sales, and Customer Relationship Management (Michael J.A. Berry & Gordon S. Linoff, 2004)
- Inductive Logic Programming: Techniques and Applications (Nada Lavrac & Saso Dzeroski, 1994)
- Pattern Recognition and Machine Learning (Christopher M. Bishop, 2006)
- Machine Learning, Neural and Statistical Classification (D. Michie, D.J. Spiegelhalter, & C.C. Taylor, 1999)
- Information Theory, Inference, and Learning Algorithms (David J.C. MacKay, 2005)
- Data Mining and Business Analytics with R (Johannes Ledolter, 2013)
- Bayesian Reasoning and Machine Learning (David Barber, 2014)
- Gaussian Processes for Machine Learning (C. E. Rasmussen & C. K. I. Williams, 2006)
- Reinforcement Learning: An Introduction (Richard S. Sutton & Andrew G. Barto, 2012)
- Algorithms for Reinforcement Learning (Csaba Szepesvari, 2009)
- Big Data, Data Mining, and Machine Learning (Jared Dean, 2014)
- Modeling With Data (Ben Klemens, 2008)
- KB – Neural Data Mining with Python Sources (Roberto Bello, 2013)
- Deep Learning (Yoshua Bengio, Ian J. Goodfellow, & Aaron Courville, 2015)
- Neural Networks and Deep Learning (Michael Nielsen, 2015)
- Data Mining Algorithms In R (Wikibooks, 2014)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meira Jr., 2014)
- Theory and Applications for Advanced Text Mining (Shigeaki Sakurai, 2012)
Statistics and Statistical Learning
- Think Stats: Exploratory Data Analysis in Python (Allen B. Downey, 2014)
- Think Bayes: Bayesian Statistics Made Simple (Allen B. Downey, 2012)
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Trevor Hastie, Robert Tibshirani, & Jerome Friedman, 2008)
- An Introduction to Statistical Learning with Applications in R (Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2013)
- A First Course in Design and Analysis of Experiments (Gary W. Oehlert, 2010)
Data Visualization
- D3 Tips and Tricks (Malcolm Maclean, 2015)
- Interactive Data Visualization for the Web (Scott Murray, 2013)
Big Data
- Disruptive Possibilities: How Big Data Changes Everything (Jeffrey Needham, 2013)
- Real-Time Big Data Analytics: Emerging Architecture (Mike Barlow, 2013)
- Big Data Now: 2012 Edition (O’Reilly Media, Inc., 2012)
分类:
目录资料
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)