Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

I found this to be really puzzling. A deeper NN is supposed to be more powerful or at least equal to a shallower NN. I have already used dropout to prevent overfitting. How can the performance be degraded?
Yoshua's Answer
Yoshua Bengio 
Yoshua BengioMy lab has been one of the three that started the deep learning approach, bac...
Upvoted by Prateek TandonRobotics and Strong Artificial Intelligence Researcher• Paul KingComputational Neuroscientist, Technology Entrepreneur • Jack Rae,Google DeepMind Research Engineer
 
If you do not change the size of the layers and just add more layers, capacity should increase, so you could be overfitting. However, you should check whether training error increases or decreases. If it increases (which is also very plausible), it means that adding the layer made the optimization harder, with the optimization methods and initialization that you are using.  That could also explain your problem. However, if training error decreases and test error increases, you are overfitting.
posted @   菜鸡一枚  阅读(303)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
点击右上角即可分享
微信分享提示