matlab 全部的随机数函数

matlab 全部的随机数函数

(一)Matlab内部函数

a. 基本随机数

Matlab中有两个最基本生成随机数的函数。

1rand()

生成(0,1)区间上均匀分布的随机变量。基本语法:

rand([M,N,P ...])

生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

rand(5,1) %生成5个随机数排列的列向量,一般用这种格式

rand(5) %生成5行5列的随机数矩阵

rand([5,4]) %生成一个5行4列的随机数矩阵

生成的随机数大致的分布。

x=rand(100000,1);

hist(x,30);

由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用)

2randn()

生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。

randn([M,N,P ...])

生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

randn(5,1) %生成5个随机数排列的列向量,一般用这种格式

randn(5) %生成5行5列的随机数矩阵

randn([5,4]) %生成一个5行4列的随机数矩阵

生成的随机数大致的分布。

x=randn(100000,1);

hist(x,50);

由图可以看到生成的随机数很符合标准正态分布。

b. 连续型分布随机数

如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。

3unifrnd()

和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法

unifrnd(a,b,[M,N,P,...])

生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

unifrnd(-2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式

unifrnd(-2,3,5) %生成5行5列的随机数矩阵

unifrnd(-2,3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数都在(-2,3)区间内.

生成的随机数大致的分布。

x=unifrnd(-2,3,100000,1);

hist(x,50);

由图可以看到生成的随机数很符合区间(-2,3)上面的均匀分布。

4normrnd()

和randn()类似,此函数生成指定均值、标准差的正态分布的随机数。基本语法

normrnd(mu,sigma,[M,N,P,...])

生成的随机数服从均值为mu,标准差为sigma(注意标准差是正数)正态分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

normrnd(2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式

normrnd(2,3,5) %生成5行5列的随机数矩阵

normrnd(2,3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的正态分布都是均值为2,标准差为3.

生成的随机数大致的分布。

x=normrnd(2,3,100000,1);

hist(x,50);

 

 

如图,上半部分是由上一行语句生成的均值为2,标准差为3的10万个随机数的大致分布,下半部分是用小节“randn()”中最后那段语句生成10万个标准正态分布随机数的大致分布。

注意到上半个图像的对称轴向正方向偏移(准确说移动到x=2处),这是由于均值为2的结果。

而且,由于标准差是3,比标准正态分布的标准差(1)要高,所以上半部分图形更胖(注意x轴刻度的不同)。

5chi2rnd()

此函数生成服从卡方(Chi-square)分布的随机数。卡方分布只有一个参数:自由度v。基本语法

chi2rnd(v,[M,N,P,...])

生成的随机数服从自由度为v的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

chi2rnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式

chi2rnd(5,5) %生成5行5列的随机数矩阵

chi2rnd(5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的卡方分布的自由度都是5

生成的随机数大致的分布。

x=chi2rnd(5,100000,1);

hist(x,50);

6frnd()

此函数生成服从F分布的随机数。F分布有2个参数:v1, v2。基本语法

frnd(v1,v2,[M,N,P,...])

生成的随机数服从参数为(v1,v2)的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

frnd(3,5,5,1) %生成5个随机数排列的列向量,一般用这种格式

frnd(3,5,5) %生成5行5列的随机数矩阵

frnd(3,5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(v1=3,v2=5)的F分布

生成的随机数大致的分布。

x=frnd(3,5,100000,1);

hist(x,50);

从结果可以看出来, F分布集中在x正半轴的左侧,但是它在极端值处也很可能有一些取值。

7trnd()

此函数生成服从t(Student's t Distribution,这里Student不是学生的意思,而是Cosset.W.S.的笔名)分布的随机数。t分布有1个参数:自由度v。基本语法

trnd(v,[M,N,P,...])

生成的随机数服从参数为v的t分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

trnd(7,5,1) %生成5个随机数排列的列向量,一般用这种格式

trnd(7,5) %生成5行5列的随机数矩阵

trnd(7,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(v=7)的t分布

生成的随机数大致的分布。

x=trnd(7,100000,1);

hist(x,50);

可以发现t分布比标准正太分布要“瘦”,不过随着自由度v的增大,t分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。

接下来的分布相对没有这么常用,同时这些函数的语法和前面函数语法相同,所以写得就简略一些——在视频中也不会讲述,你只需按照前面那几个分布的语法套用即可,应该不会有任何困难——时间足够的话这是一个不错的练习机会。

8betarnd()

此函数生成服从Beta分布的随机数。Beta分布有两个参数分别是A和B。下图是A=2,B=5 的beta分布的PDF图形。

 

生成beta分布随机数的语法是:

betarnd(A,B,[M,N,P,...])

9exprnd()

此函数生成服从指数分布的随机数。指数分布只有一个参数: mu, 下图是mu=3时指数分布的PDF图形

 

生成指数分布随机数的语法是:

betarnd(mu,[M,N,P,...])

10gamrnd()

生成服从Gamma分布的随机数。Gamma分布有两个参数:A和B。下图是A=2,B=5 Gamma分布的PDF图形

 

生成Gamma分布随机数的语法是:

gamrnd(A,B,[M,N,P,...])

11lognrnd()

生成服从对数正态分布的随机数。其有两个参数:mu和sigma,服从这个这样的随机数取对数后就服从均值为mu,标准差为sigma的正态分布。下图是mu=-1, sigma=1/1.2的对数正态分布的PDF图形。

 

生成对数正态分布随机数的语法是:

lognrnd(mu,sigma,[M,N,P,...])

12raylrnd()

生成服从瑞利(Rayleigh)分布的随机数。其分布有1个参数:B。下图是B=2的瑞利分布的PDF图形。

生成瑞利分布随机数的语法是:

raylrnd(B,[M,N,P,...])

13wblrnd()

生成服从威布尔(Weibull)分布的随机数。其分布有2个参数:scale 参数 A和shape 参数 B。下图是A=3,B=2的Weibull分布的PDF图形。

 

生成Weibull分布随机数的语法是:

wblrnd(A,B,[M,N,P,...])

还有非中心卡方分布(ncx2rnd),非中心F分布(ncfrnd),非中心t分布(nctrnd),括号中是生成服从这些分布的函数,具体用法用:

help 函数名

查找。

c. 离散型分布随机数

离散分布的随机数可能的取值是离散的,一般是整数。

14unidrnd()

此函数生成服从离散均匀分布的随机数。Unifrnd是在某个区间内均匀选取实数(可为小数或整数),Unidrnd是均匀选取整数随机数。离散均匀分布随机数有1个参数:n, 表示从{1, 2, 3, ... N}这n个整数中以相同的概率抽样。基本语法:

unidrnd(n,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

unidrnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式

unidrnd(5,5) %生成5行5列的随机数矩阵

unidrnd(5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(10,0.3)的二项分布

生成的随机数大致的分布。

x=unidrnd(9,100000,1);

hist(x,9);

可见,每个整数的取值可能性基本相同。

15binornd()

此函数生成服从二项分布的随机数。二项分布有2个参数:n,p。考虑一个打靶的例子,每枪命中率为p,共射击N枪,那么一共击中的次数就服从参数为(N,p)的二项分布。注意p要小于等于1且非负,N要为整数。基本语法:

binornd(n,p,[M,N,P,...])

生成的随机数服从参数为(N,p)的二项分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

binornd(10,0.3,5,1) %生成5个随机数排列的列向量,一般用这种格式

binornd(10,0.3,5) %生成5行5列的随机数矩阵

binornd(10,0.3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(10,0.3)的二项分布

生成的随机数大致的分布。

x=binornd(10,0.45,100000,1);

hist(x,11);

我们可以将此直方图解释为,假设每枪射击命中率为0.45,每论射击10次,共进行10万轮,这个图就表示这10万轮每轮命中成绩可能的一种情况。

16geornd()

此函数生成服从几何分布的随机数。几何分布的参数只有一个:p。几何分布的现实意义可以解释为,打靶命中率为p,不断地打靶,直到第一次命中目标时没有击中次数之和。注意p是概率,所以要小于等于1且非负。基本语法:

geornd(p,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

geornd(0.4,5,1) %生成5个随机数排列的列向量,一般用这种格式

geornd(0.4,5) %生成5行5列的随机数矩阵

geornd(0.4,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(0.4)的二项分布

生成的随机数大致的分布。

x=geornd(0.4,100000,1);

hist(x,50);

17poissrnd()

此函数生成服从泊松(Poisson)分布的随机数。泊松分布的参数只有一个:lambda。此参数要大于零。基本语法:

geornd(p,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

poissrnd(2,5,1) %生成5个随机数排列的列向量,一般用这种格式

poissrnd(2,5) %生成5行5列的随机数矩阵

poissrnd(2,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(2)的泊松分布

生成的随机数大致的分布。

x=poissrnd(2,100000,1);

hist(x,50);

其他离散分布还有超几何分布(Hyper-geometric, 函数是hygernd)等,详细见Matlab帮助文档。

posted @ 2015-07-01 11:27  菜鸡一枚  阅读(5934)  评论(0编辑  收藏  举报