梳理caffe代码data_transformer(十二)
data_transformer详细注释看头文件和实现部分:
头文件:
- /////////////////TransformationParameter的caffe消息定义
- /*
- // Message that stores parameters used to apply transformation
- // to the data layer's data
- message TransformationParameter {
- // For data pre-processing, we can do simple scaling and subtracting the
- // data mean, if provided. Note that the mean subtraction is always carried
- // out before scaling.
- optional float scale = 1 [default = 1];
- // Specify if we want to randomly mirror data.
- optional bool mirror = 2 [default = false];
- // Specify if we would like to randomly crop an image.
- optional uint32 crop_size = 3 [default = 0];
- // mean_file and mean_value cannot be specified at the same time
- optional string mean_file = 4;
- // if specified can be repeated once (would substract it from all the channels)
- // or can be repeated the same number of times as channels
- // (would subtract them from the corresponding channel)
- repeated float mean_value = 5;
- // Force the decoded image to have 3 color channels.
- optional bool force_color = 6 [default = false];
- // Force the decoded image to have 1 color channels.
- optional bool force_gray = 7 [default = false];
- }
- */
- /*
- DataTransformer类主要负责对数据进行预处理, 比如减去均值、进行crop,镜像,强制设置为彩色强制设置为灰度图像以及像素值的缩放,此外该类还将Datum、const vector<Datum>、cv::Mat&、vector<cv::Mat> 、Blob<Dtype>*类型的数据变换到目标大小的blob。负责对上述类型的数据推断其shape。
- */
- #ifndef CAFFE_DATA_TRANSFORMER_HPP
- #define CAFFE_DATA_TRANSFORMER_HPP
- #include <vector>
- #include "caffe/blob.hpp"
- #include "caffe/common.hpp"
- #include "caffe/proto/caffe.pb.h"
- namespace caffe {
- /**
- * @brief Applies common transformations to the input data, such as
- * scaling, mirroring, substracting the image mean...
- */
- template <typename Dtype>
- class DataTransformer {
- public:
- explicit DataTransformer(const TransformationParameter& param, Phase phase);
- virtual ~DataTransformer() {}
- /**
- * @brief Initialize the Random number generations if needed by the
- * transformation.
- */
- // 初始化随机数生成器,因为在对数据进行变换的时候有可能用到,比如说打乱数据的输入顺序
- void InitRand();
- /**
- * @brief Applies the transformation defined in the data layer's
- * transform_param block to the data.
- *
- * @param datum
- * Datum containing the data to be transformed.
- * @param transformed_blob
- * This is destination blob. It can be part of top blob's data if
- * set_cpu_data() is used. See data_layer.cpp for an example.
- */
- // 对Datum的数据进行变换,放入到transformed_blob中
- void Transform(const Datum& datum, Blob<Dtype>* transformed_blob);
- /**
- * @brief Applies the transformation defined in the data layer's
- * transform_param block to a vector of Datum.
- *
- * @param datum_vector
- * A vector of Datum containing the data to be transformed.
- * @param transformed_blob
- * This is destination blob. It can be part of top blob's data if
- * set_cpu_data() is used. See memory_layer.cpp for an example.
- */
- // 对Datum容器的数据进行变换翻入到transformed_blob
- void Transform(const vector<Datum> & datum_vector,
- Blob<Dtype>* transformed_blob);
- #ifdef USE_OPENCV
- /**
- * @brief Applies the transformation defined in the data layer's
- * transform_param block to a vector of Mat.
- *
- * @param mat_vector
- * A vector of Mat containing the data to be transformed.
- * @param transformed_blob
- * This is destination blob. It can be part of top blob's data if
- * set_cpu_data() is used. See memory_layer.cpp for an example.
- */
- // 如果定义OpenCV还可能对mat容器数据类型的数据进行变换
- void Transform(const vector<cv::Mat> & mat_vector,
- Blob<Dtype>* transformed_blob);
- /**
- * @brief Applies the transformation defined in the data layer's
- * transform_param block to a cv::Mat
- *
- * @param cv_img
- * cv::Mat containing the data to be transformed.
- * @param transformed_blob
- * This is destination blob. It can be part of top blob's data if
- * set_cpu_data() is used. See image_data_layer.cpp for an example.
- */
- // 将opencv读取的单个图像转换到blob中去
- void Transform(const cv::Mat& cv_img, Blob<Dtype>* transformed_blob);
- #endif // USE_OPENCV
- /**
- * @brief Applies the same transformation defined in the data layer's
- * transform_param block to all the num images in a input_blob.
- *
- * @param input_blob
- * A Blob containing the data to be transformed. It applies the same
- * transformation to all the num images in the blob.
- * @param transformed_blob
- * This is destination blob, it will contain as many images as the
- * input blob. It can be part of top blob's data.
- */
- // 将输入的blob进行变换,可能是取出blob的中的一部分数据到新的blob
- void Transform(Blob<Dtype>* input_blob, Blob<Dtype>* transformed_blob);
- /**
- * @brief Infers the shape of transformed_blob will have when
- * the transformation is applied to the data.
- *
- * @param datum
- * Datum containing the data to be transformed.
- */
- // 根据Datum获取blob的形状
- vector<int> InferBlobShape(const Datum& datum);
- /**
- * @brief Infers the shape of transformed_blob will have when
- * the transformation is applied to the data.
- * It uses the first element to infer the shape of the blob.
- *
- * @param datum_vector
- * A vector of Datum containing the data to be transformed.
- */
- // 根据Datum容器获取blob的形状
- vector<int> InferBlobShape(const vector<Datum> & datum_vector);
- /**
- * @brief Infers the shape of transformed_blob will have when
- * the transformation is applied to the data.
- * It uses the first element to infer the shape of the blob.
- *
- * @param mat_vector
- * A vector of Mat containing the data to be transformed.
- */
- #ifdef USE_OPENCV
- // 根据Mat容器获取blob的形状
- vector<int> InferBlobShape(const vector<cv::Mat> & mat_vector);
- /**
- * @brief Infers the shape of transformed_blob will have when
- * the transformation is applied to the data.
- *
- * @param cv_img
- * cv::Mat containing the data to be transformed.
- */
- // 根据Mat获取blob的形状
- vector<int> InferBlobShape(const cv::Mat& cv_img);
- #endif // USE_OPENCV
- protected:
- /**
- * @brief Generates a random integer from Uniform({0, 1, ..., n-1}).
- *
- * @param n
- * The upperbound (exclusive) value of the random number.
- * @return
- * A uniformly random integer value from ({0, 1, ..., n-1}).
- */
- // 生成从0到n-1的服从均匀分布的随机数,要求继承他的都必须实现如何生成随机数
- virtual int Rand(int n);
- // 将给定的Datum进行转换
- void Transform(const Datum& datum, Dtype* transformed_data);
- // 变换所使用的参数
- TransformationParameter param_;
- // 随机数生成器的种子
- shared_ptr<Caffe::RNG> rng_;
- // 是训练还是测试?
- Phase phase_;
- // 数据均值 blob
- Blob<Dtype> data_mean_;
- // 数据均值blob的容器
- vector<Dtype> mean_values_;
- };
- } // namespace caffe
- #endif // CAFFE_DATA_TRANSFORMER_HPP_
实现:
- //DataTransformer需要输入的是blob,所以需要看一下里面的参数,因此再把这一部分内容的proto贴出来,这是新版的caffe
- /*
- // Specifies the shape (dimensions) of a Blob.
- message BlobShape {
- repeated int64 dim = 1 [packed = true];
- }
- message BlobProto {
- optional BlobShape shape = 7;
- repeated float data = 5 [packed = true];
- repeated float diff = 6 [packed = true];
- repeated double double_data = 8 [packed = true];
- repeated double double_diff = 9 [packed = true];
- // 4D dimensions -- deprecated. Use "shape" instead.
- optional int32 num = 1 [default = 0];
- optional int32 channels = 2 [default = 0];
- optional int32 height = 3 [default = 0];
- optional int32 width = 4 [default = 0];
- }
- */
- /////////////////TransformationParameter的caffe消息定义
- /*
- // Message that stores parameters used to apply transformation
- // to the data layer's data
- message TransformationParameter {
- // For data pre-processing, we can do simple scaling and subtracting the
- // data mean, if provided. Note that the mean subtraction is always carried
- // out before scaling.
- optional float scale = 1 [default = 1];
- // Specify if we want to randomly mirror data.
- optional bool mirror = 2 [default = false];
- // Specify if we would like to randomly crop an image.
- optional uint32 crop_size = 3 [default = 0];
- // mean_file and mean_value cannot be specified at the same time
- optional string mean_file = 4;
- // if specified can be repeated once (would substract it from all the channels)
- // or can be repeated the same number of times as channels
- // (would subtract them from the corresponding channel)
- repeated float mean_value = 5;
- // Force the decoded image to have 3 color channels.
- optional bool force_color = 6 [default = false];
- // Force the decoded image to have 1 color channels.
- optional bool force_gray = 7 [default = false];
- }
- */
- #ifdef USE_OPENCV
- #include <opencv2/core/core.hpp>
- #endif // USE_OPENCV
- #include <string>
- #include <vector>
- #include "caffe/data_transformer.hpp"
- #include "caffe/util/io.hpp"
- #include "caffe/util/math_functions.hpp"
- #include "caffe/util/rng.hpp"
- namespace caffe {
- // 构造函数
- template<typename Dtype>
- DataTransformer<Dtype>::DataTransformer(const TransformationParameter& param,
- Phase phase)
- : param_(param), phase_(phase) {
- // check if we want to use mean_file
- // 判断是否有平均值文件
- if (param_.has_mean_file()) {
- CHECK_EQ(param_.mean_value_size(), 0) <<
- "Cannot specify mean_file and mean_value at the same time";
- // 平均值文件的路径
- const string& mean_file = param.mean_file();
- if (Caffe::root_solver()) {
- LOG(INFO) << "Loading mean file from: " << mean_file;
- }
- BlobProto blob_proto;// 调用google/protobuf?? ,用于加速运算的数据接口,有时间再详细了解其应用方法
- //这个函数是实现了从二进制文件中读取数据到blob_proto中,猜测函数来自第3方库的google/protobuf模块
- ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
- data_mean_.FromProto(blob_proto);// 调用Blob类的成员函数FromRroto从BlobProto中加载数据
- }
- // check if we want to use mean_value
- if (param_.mean_value_size() > 0) {
- CHECK(param_.has_mean_file() == false) <<
- "Cannot specify mean_file and mean_value at the same time";
- for (int c = 0; c < param_.mean_value_size(); ++c) {
- mean_values_.push_back(param_.mean_value(c));//将元素param_.mean_value(c)加入到mean_values_容器的最后一位
- }
- }
- }
- /*提前先描述一下数据层的Datum,
- Datum数据结构,Caffe并不是把向量和矩阵直接放进数据库的,而是将数据通过caffe.proto里定义的一个datum类来封装。数据库里放的是一个个的datum序列化成的字符串。Datum的定义摘录如下:
- message Datum {
- optional int32 channels = 1;
- optional int32 height = 2;
- optional int32 width = 3;
- // the actual image data, in bytes
- optional bytes data = 4;
- optional int32 label = 5;
- // Optionally, the datum could also hold float data.
- repeated float float_data = 6;
- // If true data contains an encoded image that need to be decoded
- optional bool encoded = 7 [default = false];
- }
- 一个Datum有三个维度,channels, height,和width,可以看做是少了num维度的Blob。存放数据的地方有两个:byte_data和float_data,分别存放整数型和浮点型数据。图像数据一般是整形,放在byte_data里,特征向量一般是浮点型,放在float_data里。label存放数据的类别标签,是整数型。encoded标识数据是否需要被解码(里面有可能放的是JPEG或者PNG之类经过编码的数据)。Datum这个数据结构将数据和标签封装在一起,兼容整形和浮点型数据。经过Protobuf编译后,可以在Python和C++中都提供高效的访问。同时Protubuf还为它提供了序列化与反序列化的功能。存放进LMDB的就是Datum序列化生成的字符串。
- Caffe中关于LMDB的代码有三类:生成数据集、读取数据集、生成特征向量。接下来就分别针对三者进行分析。
- 生成数据集:
- 生成数据集的代码在examples,随数据集提供,比如MNIST。
- 首先,创建访问LMDB所需的一些变量:
- MDB_env *mdb_env;
- MDB_dbi mdb_dbi;
- MDB_val mdb_key, mdb_data;
- MDB_txn *mdb_txn;
- ...
- mdb_env是整个数据库环境的句柄,mdb_dbi是环境中一个数据库的句柄,mdb_key和mdb_data用来存放向数据库中输入数据的“值”。mdb_txn是数据库事物操作的句柄,”txn”是”transaction”的缩写。
- 然后,创建数据库环境,创建并打开数据库:
- if (db_backend == "lmdb") { // lmdb
- LOG(INFO) << "Opening lmdb " << db_path;
- CHECK_EQ(mkdir(db_path, 0744), 0)
- << "mkdir " << db_path << "failed";
- CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed";
- CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS) // 1TB
- << "mdb_env_set_mapsize failed";
- CHECK_EQ(mdb_env_open(mdb_env, db_path, 0, 0664), MDB_SUCCESS)
- << "mdb_env_open failed";
- CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS)
- << "mdb_txn_begin failed";
- CHECK_EQ(mdb_open(mdb_txn, NULL, 0, &mdb_dbi), MDB_SUCCESS)
- << "mdb_open failed. Does the lmdb already exist? ";
- } else {
- LOG(FATAL) << "Unknown db backend " << db_backend;
- }
- mkdir(db_path, 0744)为数据库创建文件夹,如果文件夹已经存在,程序会报错退出。也就是说,程序不会覆盖已有的数据库。已有的数据库如果不要了,需要手动删除。需要注意的是,LMDB的一个环境中是可以有多个数据库的,数据库之间以名字区分。mdb_open()的第二个参数实际上就是数据库的名称(char *)。当一个环境中只有一个数据库的时候,这个参数可以给NULL。最后,为每一个图像创建Datum对象,向对象内写入数据,然后将其序列化成字符串,将字符串放入数据库中:
- Datum datum;
- datum.set_channels(1);
- datum.set_height(rows);
- datum.set_width(cols);
- for (int item_id = 0; item_id < num_items; ++item_id) {
- image_file.read(pixels, rows * cols);
- label_file.read(&label, 1);
- datum.set_data(pixels, rows*cols);
- datum.set_label(label);
- snprintf(key_cstr, kMaxKeyLength, "%08d", item_id);
- datum.SerializeToString(&value);
- string keystr(key_cstr);
- // Put in db
- if (db_backend == "lmdb") { // lmdb
- mdb_data.mv_size = value.size();
- mdb_data.mv_data = reinterpret_cast<void*>(&value[0]);
- mdb_key.mv_size = keystr.size();
- mdb_key.mv_data = reinterpret_cast<void*>(&keystr[0]);
- CHECK_EQ(mdb_put(mdb_txn, mdb_dbi, &mdb_key, &mdb_data, 0), MDB_SUCCESS)
- << "mdb_put failed";
- } else {
- LOG(FATAL) << "Unknown db backend " << db_backend;
- }
- if (++count % 1000 == 0) {
- // Commit txn
- if (db_backend == "lmdb") { // lmdb
- CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS)
- << "mdb_txn_commit failed";
- CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS)
- << "mdb_txn_begin failed";
- } else {
- LOG(FATAL) << "Unknown db backend " << db_backend;
- }
- }
- }
- 放入数据的Key是图像的编号,前面补0至8位。MDB_val类型的mdb_data和mdb_key中存放的是数据来源的指针,以及数据的长度。mdb_put()函数将数据存入数据库。每隔1000个图像commit一次数据库。只有commit之后,数据才真正写入磁盘。
- 读取数据集:
- Caffe中读取LMDB数据集的代码是DataLayer,用在网络的最下层,提供数据。DataLayer采用顺序遍历的方式读取数据,不支持打乱数据顺序,只能随机跳过前若干个数据。
- 首先,在DataLayer的DataLayerSetUp方法中,打开数据库,并获取迭代器cursor_:
- db_.reset(db::GetDB(this->layer_param_.data_param().backend()));
- db_->Open(this->layer_param_.data_param().source(), db::READ);
- cursor_.reset(db_->NewCursor());
- 然后,在每一次的数据预取时,InternalThreadEntry()方法中,从数据库中读取字符串,反序列化为Datum对象,再从Datum对象中取出数据:
- Datum datum;
- datum.ParseFromString(cursor_->value());
- 其中,cursor_->value()获取序列化后的字符串。datum.ParseFromString()方法对字符串进行反序列化。
- 最后,要将cursor_向前推进:
- cursor_->Next();
- if (!cursor_->valid()) {
- DLOG(INFO) << "Restarting data prefetching from start."
- cursor_->SeekToFirst();
- }
- 如果cursor->valid()返回false,说明数据库已经遍历到头,这时需要将cursor_重置回数据库开头。不支持样本随机排序应该是DataLayer的致命弱点。如果数据库的key能够统一,其实可以通过对key随机枚举的方式实现。所以caffe定义了一个随机生成器RNG。
- */
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(const Datum& datum,
- Dtype* transformed_data) {
- // 参考TransformationParameter的定义
- const string& data = datum.data();
- const int datum_channels = datum.channels();//数据的channel
- const int datum_height = datum.height();//数据的行数
- const int datum_width = datum.width();// 数据的列数
- const int crop_size = param_.crop_size();// crop大小
- const Dtype scale = param_.scale();// 缩放比例
- const bool do_mirror = param_.mirror() && Rand(2);// 该参数用于在镜像位置对数据处理
- const bool has_mean_file = param_.has_mean_file();// 是否有均值文件
- const bool has_uint8 = data.size() > 0;// 数据是否为uint8还是float类型的
- const bool has_mean_values = mean_values_.size() > 0;// 是否有每个channel的均值
- // 检查合法性
- CHECK_GT(datum_channels, 0);
- CHECK_GE(datum_height, crop_size);
- CHECK_GE(datum_width, crop_size);
- Dtype* mean = NULL;
- /*
- 前面有介绍这一部分CHECK内容,glog提供了多个便利的宏来处理特定关系的判定。具体有:
- 1,判定大小关系
- CHECK_EQ, CHECK_NE, CHECK_LE, CHECK_LT, CHECK_GE, CHECK_GT,使用这些宏需要注意类型一致,如果出现类型不一致的,可使用static_cast转换。
- 2,判定指针是否为空
- CHECK_NOTNULL(some_ptr),可用于对象初始化的时候。
- 3,判定字符串是否相等
- CHECK_STREQ, CHECK_STRNE, CHECK_STRCASEEQ,CHECK_STRCASENE。可进行大小写敏感或不敏感字符串来分别判定。
- 4, 判定浮点是否相等或相近
- CHECK_DOUBLE_EQ,CHECK_NEAR。这两个宏都需要指定一个可容忍的偏差上限。
- */
- if (has_mean_file) {// 检查mean_file是否与数据的参数一致
- CHECK_EQ(datum_channels, data_mean_.channels());
- CHECK_EQ(datum_height, data_mean_.height());
- CHECK_EQ(datum_width, data_mean_.width());
- mean = data_mean_.mutable_cpu_data();
- }
- if (has_mean_values) {
- CHECK(mean_values_.size() == 1 || mean_values_.size() == datum_channels) <<
- "Specify either 1 mean_value or as many as channels: " << datum_channels;
- if (datum_channels > 1 && mean_values_.size() == 1) {
- // Replicate the mean_value for simplicity
- for (int c = 1; c < datum_channels; ++c) {
- mean_values_.push_back(mean_values_[0]);
- }
- }
- }
- int height = datum_height;
- int width = datum_width;
- // 根据是否需要crop来生成h_off和w_off
- int h_off = 0;
- int w_off = 0;
- if (crop_size) {// 如果crop_size不为0
- height = crop_size;
- width = crop_size;
- // We only do random crop when we do training.
- // 在训练的时候随机crop图像块,这里需要自己实现Rand这个函数来确定是如何随机的
- if (phase_ == TRAIN) {
- h_off = Rand(datum_height - crop_size + 1);// 产生从0到datum_height - crop_size的随机数
- w_off = Rand(datum_width - crop_size + 1);
- } else {// 测试的时候不用随机,取图像的中心
- h_off = (datum_height - crop_size) / 2;
- w_off = (datum_width - crop_size) / 2;
- }
- }
- // 对数据进行变换,主要是将原来的像素值减去均值,然后乘以scale这么一个操作
- // 如果需要crop则最终转换的Blob的大小即为crop*crop
- // 如果不是,则最终的Blob大小即为datum_height*datum_width
- Dtype datum_element;
- int top_index, data_index;
- for (int c = 0; c < datum_channels; ++c) {
- for (int h = 0; h < height; ++h) {
- for (int w = 0; w < width; ++w) {
- data_index = (c * datum_height + h_off + h) * datum_width + w_off + w;// 获取数据的索引,我不是很明白怎么计算的?
- if (do_mirror) {// 是否需要在镜像位置转换
- top_index = (c * height + h) * width + (width - 1 - w);//在宽这个坐标上做文章,来实现镜像
- } else {//
- top_index = (c * height + h) * width + w;
- }
- if (has_uint8) {// 数据如果是uint8则进行转换
- datum_element =
- static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
- } else {// 否则就是float
- datum_element = datum.float_data(data_index);
- }
- if (has_mean_file) {// 如果有mean_file,则原来的像素值减去均值,然后乘以scale
- transformed_data[top_index] =
- (datum_element - mean[data_index]) * scale;
- } else {
- if (has_mean_values) {// 否则减去该channel的均值(每个channel有其一个均值),然后乘以scale
- transformed_data[top_index] =
- (datum_element - mean_values_[c]) * scale;
- } else {// 否则如果没有均值那么就直接乘以scale即可
- transformed_data[top_index] = datum_element * scale;
- }
- }
- }
- }
- }
- }
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(const Datum& datum,
- Blob<Dtype>* transformed_blob) {
- // If datum is encoded, decoded and transform the cv::image.
- if (datum.encoded()) {// 检查是否编码了,如果是则解码
- #ifdef USE_OPENCV
- // 先检查是不是两个属性都设置, 如果是则说明参数设置有误
- CHECK(!(param_.force_color() && param_.force_gray()))
- << "cannot set both force_color and force_gray";
- cv::Mat cv_img;
- if (param_.force_color() || param_.force_gray()) {
- // 如果强制彩色或者强制灰度图像一个成立则使用DecodeDatumToCVMat解码
- // If force_color then decode in color otherwise decode in gray.
- cv_img = DecodeDatumToCVMat(datum, param_.force_color());
- } else {// 否则使用DecodeDatumToCVMatNative解码
- cv_img = DecodeDatumToCVMatNative(datum);
- }
- // Transform the cv::image into blob.
- // 变换
- return Transform(cv_img, transformed_blob);
- #else
- LOG(FATAL) << "Encoded datum requires OpenCV; compile with USE_OPENCV.";
- #endif // USE_OPENCV
- } else {// 如果没有编码则,检查force_color和force_gray是否设置,如果设置则不合法,因为该选项只适合于编码后的数据
- if (param_.force_color() || param_.force_gray()) {
- LOG(ERROR) << "force_color and force_gray only for encoded datum";
- }
- }
- const int crop_size = param_.crop_size();
- const int datum_channels = datum.channels();
- const int datum_height = datum.height();
- const int datum_width = datum.width();
- // Check dimensions.
- const int channels = transformed_blob->channels();
- const int height = transformed_blob->height();
- const int width = transformed_blob->width();
- const int num = transformed_blob->num();
- CHECK_EQ(channels, datum_channels);
- CHECK_LE(height, datum_height);
- CHECK_LE(width, datum_width);
- CHECK_GE(num, 1);
- if (crop_size) {
- CHECK_EQ(crop_size, height);
- CHECK_EQ(crop_size, width);
- } else {
- CHECK_EQ(datum_height, height);
- CHECK_EQ(datum_width, width);
- }
- // 继续变换数据
- Dtype* transformed_data = transformed_blob->mutable_cpu_data();
- Transform(datum, transformed_data);
- }
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(const vector<Datum> & datum_vector,
- Blob<Dtype>* transformed_blob) {
- const int datum_num = datum_vector.size();
- // 变换到的目标blob的形状
- const int num = transformed_blob->num();
- const int channels = transformed_blob->channels();
- const int height = transformed_blob->height();
- const int width = transformed_blob->width();
- CHECK_GT(datum_num, 0) << "There is no datum to add";
- CHECK_LE(datum_num, num) <<
- "The size of datum_vector must be no greater than transformed_blob->num()";
- // 新建一个uni_blob,里面只有一个batch
- Blob<Dtype> uni_blob(1, channels, height, width);
- for (int item_id = 0; item_id < datum_num; ++item_id) {
- int offset = transformed_blob->offset(item_id);
- uni_blob.set_cpu_data(transformed_blob->mutable_cpu_data() + offset);
- Transform(datum_vector[item_id], &uni_blob);
- }
- }
- #ifdef USE_OPENCV
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(const vector<cv::Mat> & mat_vector,
- Blob<Dtype>* transformed_blob) {
- // 获取mat的参数
- const int mat_num = mat_vector.size();
- const int num = transformed_blob->num();
- const int channels = transformed_blob->channels();
- const int height = transformed_blob->height();
- const int width = transformed_blob->width();
- CHECK_GT(mat_num, 0) << "There is no MAT to add";
- CHECK_EQ(mat_num, num) <<
- "The size of mat_vector must be equals to transformed_blob->num()";
- // 同上
- Blob<Dtype> uni_blob(1, channels, height, width);
- for (int item_id = 0; item_id < mat_num; ++item_id) {
- int offset = transformed_blob->offset(item_id);
- uni_blob.set_cpu_data(transformed_blob->mutable_cpu_data() + offset);
- Transform(mat_vector[item_id], &uni_blob);
- }
- }
- // 如果是图像的话,需要减去均值乘以scale,判断是不是需要做镜像处理
- // 逻辑与前面类似
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(const cv::Mat& cv_img,
- Blob<Dtype>* transformed_blob) {
- const int crop_size = param_.crop_size();
- const int img_channels = cv_img.channels();
- const int img_height = cv_img.rows;
- const int img_width = cv_img.cols;
- // Check dimensions.
- const int channels = transformed_blob->channels();
- const int height = transformed_blob->height();
- const int width = transformed_blob->width();
- const int num = transformed_blob->num();
- CHECK_EQ(channels, img_channels);
- CHECK_LE(height, img_height);
- CHECK_LE(width, img_width);
- CHECK_GE(num, 1);
- CHECK(cv_img.depth() == CV_8U) << "Image data type must be unsigned byte";
- const Dtype scale = param_.scale();
- const bool do_mirror = param_.mirror() && Rand(2);
- const bool has_mean_file = param_.has_mean_file();
- const bool has_mean_values = mean_values_.size() > 0;
- CHECK_GT(img_channels, 0);
- CHECK_GE(img_height, crop_size);
- CHECK_GE(img_width, crop_size);
- Dtype* mean = NULL;
- if (has_mean_file) {
- CHECK_EQ(img_channels, data_mean_.channels());
- CHECK_EQ(img_height, data_mean_.height());
- CHECK_EQ(img_width, data_mean_.width());
- mean = data_mean_.mutable_cpu_data();
- }
- if (has_mean_values) {
- CHECK(mean_values_.size() == 1 || mean_values_.size() == img_channels) <<
- "Specify either 1 mean_value or as many as channels: " << img_channels;
- if (img_channels > 1 && mean_values_.size() == 1) {
- // Replicate the mean_value for simplicity
- for (int c = 1; c < img_channels; ++c) {
- mean_values_.push_back(mean_values_[0]);
- }
- }
- }
- int h_off = 0;
- int w_off = 0;
- cv::Mat cv_cropped_img = cv_img;
- if (crop_size) {
- CHECK_EQ(crop_size, height);
- CHECK_EQ(crop_size, width);
- // We only do random crop when we do training.
- if (phase_ == TRAIN) {
- h_off = Rand(img_height - crop_size + 1);
- w_off = Rand(img_width - crop_size + 1);
- } else {
- h_off = (img_height - crop_size) / 2;
- w_off = (img_width - crop_size) / 2;
- }
- cv::Rect roi(w_off, h_off, crop_size, crop_size);
- cv_cropped_img = cv_img(roi);
- } else {
- CHECK_EQ(img_height, height);
- CHECK_EQ(img_width, width);
- }
- CHECK(cv_cropped_img.data);
- Dtype* transformed_data = transformed_blob->mutable_cpu_data();
- int top_index;
- for (int h = 0; h < height; ++h) {
- const uchar* ptr = cv_cropped_img.ptr<uchar>(h);
- int img_index = 0;
- for (int w = 0; w < width; ++w) {
- for (int c = 0; c < img_channels; ++c) {
- if (do_mirror) {
- top_index = (c * height + h) * width + (width - 1 - w);
- } else {
- top_index = (c * height + h) * width + w;
- }
- // int top_index = (c * height + h) * width + w;
- Dtype pixel = static_cast<Dtype>(ptr[img_index++]);
- if (has_mean_file) {
- int mean_index = (c * img_height + h_off + h) * img_width + w_off + w;
- transformed_data[top_index] =
- (pixel - mean[mean_index]) * scale;
- } else {
- if (has_mean_values) {
- transformed_data[top_index] =
- (pixel - mean_values_[c]) * scale;
- } else {
- transformed_data[top_index] = pixel * scale;
- }
- }
- }
- }
- }
- }
- #endif // USE_OPENCV
- template<typename Dtype>
- void DataTransformer<Dtype>::Transform(Blob<Dtype>* input_blob,
- Blob<Dtype>* transformed_blob) {
- const int crop_size = param_.crop_size();
- const int input_num = input_blob->num();
- const int input_channels = input_blob->channels();
- const int input_height = input_blob->height();
- const int input_width = input_blob->width();
- if (transformed_blob->count() == 0) {
- // Initialize transformed_blob with the right shape.
- if (crop_size) {
- transformed_blob->Reshape(input_num, input_channels,
- crop_size, crop_size);
- } else {
- transformed_blob->Reshape(input_num, input_channels,
- input_height, input_width);
- }
- }
- const int num = transformed_blob->num();
- const int channels = transformed_blob->channels();
- const int height = transformed_blob->height();
- const int width = transformed_blob->width();
- const int size = transformed_blob->count();
- CHECK_LE(input_num, num);
- CHECK_EQ(input_channels, channels);
- CHECK_GE(input_height, height);
- CHECK_GE(input_width, width);
- const Dtype scale = param_.scale();
- const bool do_mirror = param_.mirror() && Rand(2);
- const bool has_mean_file = param_.has_mean_file();
- const bool has_mean_values = mean_values_.size() > 0;
- int h_off = 0;
- int w_off = 0;
- if (crop_size) {
- CHECK_EQ(crop_size, height);
- CHECK_EQ(crop_size, width);
- // We only do random crop when we do training.
- if (phase_ == TRAIN) {
- h_off = Rand(input_height - crop_size + 1);
- w_off = Rand(input_width - crop_size + 1);
- } else {
- h_off = (input_height - crop_size) / 2;
- w_off = (input_width - crop_size) / 2;
- }
- } else {
- CHECK_EQ(input_height, height);
- CHECK_EQ(input_width, width);
- }
- // 如果有均值文件则
- Dtype* input_data = input_blob->mutable_cpu_data();
- if (has_mean_file) {
- CHECK_EQ(input_channels, data_mean_.channels());
- CHECK_EQ(input_height, data_mean_.height());
- CHECK_EQ(input_width, data_mean_.width());
- for (int n = 0; n < input_num; ++n) {
- int offset = input_blob->offset(n);
- /*
- template <typename Dtype>
- void caffe_sub(const int N, const Dtype* a, const Dtype* b, Dtype* y);
- math_function中定义的caffe_sub目的是矩阵相减input_data(以offset开始的矩阵) = input_data(以offset开始的矩阵) - data_mean_
- */
- caffe_sub(data_mean_.count(), input_data + offset,
- data_mean_.cpu_data(), input_data + offset);
- }
- }
- // 如果每个channel有均值则
- if (has_mean_values) {
- CHECK(mean_values_.size() == 1 || mean_values_.size() == input_channels) <<
- "Specify either 1 mean_value or as many as channels: " << input_channels;
- if (mean_values_.size() == 1) {
- caffe_add_scalar(input_blob->count(), -(mean_values_[0]), input_data);
- } else {
- for (int n = 0; n < input_num; ++n) {
- for (int c = 0; c < input_channels; ++c) {
- int offset = input_blob->offset(n, c);
- // 给nput_data[offset]地址开始的每一个元素加上一个-mean_values_[c]
- caffe_add_scalar(input_height * input_width, -(mean_values_[c]),
- input_data + offset);
- }
- }
- }
- }
- // 如果啥均值都没有则直接复制
- Dtype* transformed_data = transformed_blob->mutable_cpu_data();
- for (int n = 0; n < input_num; ++n) {
- int top_index_n = n * channels;
- int data_index_n = n * channels;
- for (int c = 0; c < channels; ++c) {
- int top_index_c = (top_index_n + c) * height;
- int data_index_c = (data_index_n + c) * input_height + h_off;
- for (int h = 0; h < height; ++h) {
- int top_index_h = (top_index_c + h) * width;
- int data_index_h = (data_index_c + h) * input_width + w_off;
- if (do_mirror) {
- int top_index_w = top_index_h + width - 1;
- for (int w = 0; w < width; ++w) {
- transformed_data[top_index_w-w] = input_data[data_index_h + w];
- }
- } else {
- for (int w = 0; w < width; ++w) {
- transformed_data[top_index_h + w] = input_data[data_index_h + w];
- }
- }
- }
- }
- }
- if (scale != Dtype(1)) {
- DLOG(INFO) << "Scale: " << scale;
- caffe_scal(size, scale, transformed_data);
- }
- }
- template<typename Dtype>
- vector<int> DataTransformer<Dtype>::InferBlobShape(const Datum& datum) {
- if (datum.encoded()) {
- #ifdef USE_OPENCV // 如果使用OpenCV则可以用先转换为CVMat,然后在推断blob的形状
- CHECK(!(param_.force_color() && param_.force_gray()))
- << "cannot set both force_color and force_gray";
- cv::Mat cv_img;
- if (param_.force_color() || param_.force_gray()) {
- // If force_color then decode in color otherwise decode in gray.
- cv_img = DecodeDatumToCVMat(datum, param_.force_color());
- } else {
- cv_img = DecodeDatumToCVMatNative(datum);
- }
- // InferBlobShape using the cv::image.
- return InferBlobShape(cv_img);
- #else
- LOG(FATAL) << "Encoded datum requires OpenCV; compile with USE_OPENCV.";
- #endif // USE_OPENCV
- }
- // 否则直接粗暴地从datum里面获取形状的数据
- const int crop_size = param_.crop_size();
- const int datum_channels = datum.channels();
- const int datum_height = datum.height();
- const int datum_width = datum.width();
- // Check dimensions.
- CHECK_GT(datum_channels, 0);
- CHECK_GE(datum_height, crop_size);
- CHECK_GE(datum_width, crop_size);
- // Build BlobShape.
- vector<int> shape(4);
- shape[0] = 1;
- shape[1] = datum_channels;
- shape[2] = (crop_size)? crop_size: datum_height;
- shape[3] = (crop_size)? crop_size: datum_width;
- return shape;
- }
- template<typename Dtype>
- vector<int> DataTransformer<Dtype>::InferBlobShape(
- const vector<Datum> & datum_vector) {
- const int num = datum_vector.size();
- CHECK_GT(num, 0) << "There is no datum to in the vector";
- // Use first datum in the vector to InferBlobShape.
- // 使用第一个来进行推断
- vector<int> shape = InferBlobShape(datum_vector[0]);
- // Adjust num to the size of the vector.
- shape[0] = num;
- return shape;
- }
- #ifdef USE_OPENCV
- // 如果使用OpenCV
- // 使用CVMat中的信息来推断形状
- template<typename Dtype>
- vector<int> DataTransformer<Dtype>::InferBlobShape(const cv::Mat& cv_img) {
- const int crop_size = param_.crop_size();
- const int img_channels = cv_img.channels();
- const int img_height = cv_img.rows;
- const int img_width = cv_img.cols;
- // Check dimensions.
- CHECK_GT(img_channels, 0);
- CHECK_GE(img_height, crop_size);
- CHECK_GE(img_width, crop_size);
- // Build BlobShape.
- vector<int> shape(4);
- shape[0] = 1;
- shape[1] = img_channels;
- shape[2] = (crop_size)? crop_size: img_height;
- shape[3] = (crop_size)? crop_size: img_width;
- return shape;
- }
- template<typename Dtype>
- vector<int> DataTransformer<Dtype>::InferBlobShape(
- const vector<cv::Mat> & mat_vector) {
- const int num = mat_vector.size();
- CHECK_GT(num, 0) << "There is no cv_img to in the vector";
- // Use first cv_img in the vector to InferBlobShape.
- // 使用第一个来推断
- vector<int> shape = InferBlobShape(mat_vector[0]);
- // Adjust num to the size of the vector.
- shape[0] = num;
- return shape;
- }
- #endif // USE_OPENCV
- // 初始化随机数种子
- template <typename Dtype>
- void DataTransformer<Dtype>::InitRand() {
- // 要么需要镜像要么训练阶段和需要crop同时满足的情况下才初始化随机数种子
- const bool needs_rand = param_.mirror() ||
- (phase_ == TRAIN && param_.crop_size());
- if (needs_rand) {
- const unsigned int rng_seed = caffe_rng_rand();// 获得随机数种子(通过熵池或者时间生成种子)
- rng_.reset(new Caffe::RNG(rng_seed));//初始化随机数种子并实例化随机数生成器
- } else {
- rng_.reset();//否则随机数生成器设置为空
- }
- }
- // 产生从0到n的随机数
- template <typename Dtype>
- int DataTransformer<Dtype>::Rand(int n) {
- CHECK(rng_);
- CHECK_GT(n, 0);
- caffe::rng_t* rng =
- static_cast<caffe::rng_t*>(rng_->generator());
- return ((*rng)() % n);
- }
- INSTANTIATE_CLASS(DataTransformer);
- /*
- 初始化类的宏定义是这样的,前面有讲过,这里再给出来
- #define INSTANTIATE_CLASS(classname) \
- char gInstantiationGuard##classname; \
- template class classname<float>; \
- template class classname<double>
- */
- } // namespace caffe