梳理caffe代码blob(三)
贯穿整个caffe的就是数据blob:
- #ifndef CAFFE_BLOB_HPP_
- #define CAFFE_BLOB_HPP_
- #include <algorithm>
- #include <string>
- #include <vector>
- #include "caffe/common.hpp"
- #include "caffe/proto/caffe.pb.h"
- #include "caffe/syncedmem.hpp"
- #include "caffe/util/math_functions.hpp"
- const int kMaxBlobAxes = INT_MAX;
- namespace caffe {
- /**
- * @brief A wrapper around SyncedMemory holders serving as the basic
- * computational unit through which Layer%s, Net%s, and Solver%s
- * interact.
- *
- * TODO(dox): more thorough description.
- */
- template <typename Dtype>
- class Blob {
- public:
- Blob()
- : data_(), diff_(), count_(0), capacity_(0) {}
- /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
- //explicit关键字的作用是禁止单参数构造函数的隐式转换
- explicit Blob(const int num, const int channels, const int height,
- const int width);
- explicit Blob(const vector<int>& shape);
- /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
- /*
- Reshape函数将num,channels,height,width传递给vector shape_
- */
- void Reshape(const int num, const int channels, const int height,
- const int width);
- /**
- *Blob作为一个最基础的类,其中构造函数开辟一个内存空间来存储数据,Reshape函数在Layer中的
- *reshape或者forward 操作中来adjust the dimensions of a top blob。同时在改变Blob大小时,
- *内存将会被重新分配如果内存大小不够了,并且额外的内存将不会被释放。对input的blob进行reshape,
- *如果立马调用Net::Backward是会出错的,因为reshape之后,要么Net::forward或者Net::Reshape就会
- *被调用来将新的input shape 传播到高层
- */
- //根据shape来初始化shape_和shape_data_,以及为data_ 和diff_ 分配空间。
- void Reshape(const vector<int>& shape);
- void Reshape(const BlobShape& shape);
- void ReshapeLike(const Blob& other);
- //iniline主要是将代码进行复制,扩充,会使代码总量上升,好处就是可以节省调用的开销,以string形式获取shape_
- inline string shape_string() const {
- ostringstream stream;
- for (int i = 0; i < shape_.size(); ++i) {
- stream << shape_[i] << " ";
- }
- stream << "(" << count_ << ")";
- return stream.str();
- }
- //获取shape_
- inline const vector<int>& shape() const { return shape_; }
- /**
- * @brief Returns the dimension of the index-th axis (or the negative index-th
- * axis from the end, if index is negative).
- *
- * @param index the axis index, which may be negative as it will be
- * "canonicalized" using CanonicalAxisIndex.
- * Dies on out of range index.
- */
- //获取index维的大小
- inline int shape(int index) const {
- return shape_[CanonicalAxisIndex(index)];
- }
- //获取维的个数
- inline int num_axes() const { return shape_.size(); }
- //获取当前data的大小
- inline int count() const { return count_; }
- /**
- * @brief Compute the volume of a slice; i.e., the product of dimensions
- * among a range of axes.
- *
- * @param start_axis The first axis to include in the slice.
- *
- * @param end_axis The first axis to exclude from the slice.
- */
- /*多个count()函数,主要还是为了统计Blob的容量(volume),或者是某一片(slice),
- 从某个axis到具体某个axis的shape乘积。
- */
- //获取某几维数据的大小
- inline int count(int start_axis, int end_axis) const {
- CHECK_LE(start_axis, end_axis);
- CHECK_GE(start_axis, 0);
- CHECK_GE(end_axis, 0);
- CHECK_LE(start_axis, num_axes());
- CHECK_LE(end_axis, num_axes());
- int count = 1;
- for (int i = start_axis; i < end_axis; ++i) {
- count *= shape(i);
- }
- return count;
- }
- /**
- * @brief Compute the volume of a slice spanning from a particular first
- * axis to the final axis.
- *
- * @param start_axis The first axis to include in the slice.
- */
- //获取某一维到结束数据的大小
- inline int count(int start_axis) const {
- return count(start_axis, num_axes());
- }
- /**
- * @brief Returns the 'canonical' version of a (usually) user-specified axis,
- * allowing for negative indexing (e.g., -1 for the last axis).
- *
- * @param index the axis index.
- * If 0 <= index < num_axes(), return index.
- * If -num_axes <= index <= -1, return (num_axes() - (-index)),
- * e.g., the last axis index (num_axes() - 1) if index == -1,
- * the second to last if index == -2, etc.
- * Dies on out of range index.
- */
- //Blob的Index是可以从负坐标开始读的,标准化索引,主要是对参数索引进行标准化,以满足要求
- inline int CanonicalAxisIndex(int axis_index) const {
- CHECK_GE(axis_index, -num_axes())
- << "axis " << axis_index << " out of range for " << num_axes()
- << "-D Blob with shape " << shape_string();
- CHECK_LT(axis_index, num_axes())
- << "axis " << axis_index << " out of range for " << num_axes()
- << "-D Blob with shape " << shape_string();
- if (axis_index < 0) {
- return axis_index + num_axes();
- }
- return axis_index;
- }
- //Blob中的4个基本变量num,channel,height,width可以直接通过shape(0),shape(1),shape(2),shape(3)来访问
- /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
- inline int num() const { return LegacyShape(0); }
- /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
- inline int channels() const { return LegacyShape(1); }
- /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
- inline int height() const { return LegacyShape(2); }
- /// @brief Deprecated legacy shape accessor width: use shape(3) instead.
- inline int width() const { return LegacyShape(3); }
- //data_维数不大于4时才能使用,功能同shape()类似。
- inline int LegacyShape(int index) const {
- CHECK_LE(num_axes(), 4)
- << "Cannot use legacy accessors on Blobs with > 4 axes.";
- CHECK_LT(index, 4);
- CHECK_GE(index, -4);
- if (index >= num_axes() || index < -num_axes()) {
- // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
- // indexing) -- this special case simulates the one-padding used to fill
- // extraneous axes of legacy blobs.
- return 1;
- }
- return shape(index);
- }
- //计算offset,offset计算的方式也支持两种方式,一种直接指定n,c,h,w或者放到一个vector中进行计算,
- //偏差是根据对应的n,c,h,w,返回的offset是((n*channels()+c)*height()+h)*width()+w
- inline int offset(const int n, const int c = 0, const int h = 0,
- const int w = 0) const {
- CHECK_GE(n, 0);
- CHECK_LE(n, num());
- CHECK_GE(channels(), 0);
- CHECK_LE(c, channels());
- CHECK_GE(height(), 0);
- CHECK_LE(h, height());
- CHECK_GE(width(), 0);
- CHECK_LE(w, width());
- return ((n * channels() + c) * height() + h) * width() + w;
- }
- inline int offset(const vector<int>& indices) const {
- CHECK_LE(indices.size(), num_axes());
- int offset = 0;
- for (int i = 0; i < num_axes(); ++i) {
- offset *= shape(i);
- if (indices.size() > i) {
- CHECK_GE(indices[i], 0);
- CHECK_LT(indices[i], shape(i));
- offset += indices[i];
- }
- }
- return offset;
- }
- /**
- * @brief Copy from a source Blob.
- *
- * @param source the Blob to copy from
- * @param copy_diff if false, copy the data; if true, copy the diff
- * @param reshape if false, require this Blob to be pre-shaped to the shape
- * of other (and die otherwise); if true, Reshape this Blob to other's
- * shape if necessary
- */
- //一个blob中copy数据 ,通过开关控制是否copy_diff,如果是False则copy data。reshape控制是否需要reshape
- void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
- bool reshape = false);
- /*这一部分函数主要通过给定的位置访问数据,根据位置计算与数据起始
- 的偏差offset,在通过cpu_data*指针获得地址
- */
- //获取某位置的data_数据
- inline Dtype data_at(const int n, const int c, const int h,
- const int w) const {
- return cpu_data()[offset(n, c, h, w)];
- }
- //获取某位置的diff_数据
- inline Dtype diff_at(const int n, const int c, const int h,
- const int w) const {
- return cpu_diff()[offset(n, c, h, w)];
- }
- inline Dtype data_at(const vector<int>& index) const {
- return cpu_data()[offset(index)];
- }
- inline Dtype diff_at(const vector<int>& index) const {
- return cpu_diff()[offset(index)];
- }
- //获取data_
- inline const shared_ptr<SyncedMemory>& data() const {
- CHECK(data_);
- return data_;
- }
- //获取diff_
- inline const shared_ptr<SyncedMemory>& diff() const {
- CHECK(diff_);
- return diff_;
- }
- //这里有data和diff两类数据,而这个diff就是我们所熟知的偏差,前者主要存储
- //前向传递的数据,而后者存储的是反向传播中的梯度
- const Dtype* cpu_data() const;//获取data_ cpu指针
- void set_cpu_data(Dtype* data);//设置data_的cpu指针,只是修改了指针
- const Dtype* gpu_data() const;//获取data_的gpu指针
- const Dtype* cpu_diff() const;//获取diff_的cpu指针
- const Dtype* gpu_diff() const;//获取diff_的gpu指针
- Dtype* mutable_cpu_data();//见SyncedMemory的mutable_cpu_data();
- Dtype* mutable_gpu_data();//见SyncedMemory的mutable_gpu_data();
- Dtype* mutable_cpu_diff();//见SyncedMemory的mutable_cpu_data();
- Dtype* mutable_gpu_diff();//见SyncedMemory的mutable_gpu_data();
- //更新data_的数据,减去diff_的数据
- void Update();
- /*
- 其中用到math_functions.hpp中的函数caffe_axpy(),该函数封装了cblas_saxpy,实现的是Y=alpha*X+Y。
- 由此,知该函数的功能是data_=(data_-diff_)。另外,该函数只实现了对double和float型数据,
- 对于unsigned int和int由于该函数主要是在Net中被调用,只有Blob<float>和Blob<double>型式,
- 因此没有定义unsigned int和int。
- */
- void FromProto(const BlobProto& proto, bool reshape = true);
- /*
- 由BlobProto对Blob进行赋值操作。reshape代表是否允许修改shape_的大小。
- 需要注意的是再这里有double和float两种类型的数据 ,在代码中可以看到具体的体现
- */
- void ToProto(BlobProto* proto, bool write_diff = false) const;
- /// @brief Compute the sum of absolute values (L1 norm) of the data.
- /*
- 功能:计算L1范数
- 说明:其中用到了math_function.hpp中的函数caffe_cpu_asum()和caffe_gpu_asum,实现的功能是对向量X求其每个元素绝对值的和,不同的是X分别在cpu和gpu中。
- */
- Dtype asum_data() const;
- /// @brief Compute the sum of absolute values (L1 norm) of the diff.
- Dtype asum_diff() const;
- /// @brief Compute the sum of squares (L2 norm squared) of the data.
- /*
- 功能:计算L2范数。
- 说明:用到了math_function.hpp中的caffe_cpu_dot(),caffe_cpu_strided_dot(),caffe_gpu_dot(), caffe_gpu_strided_dot()。具体就是就向量X的平方和。
- */
- Dtype sumsq_data() const;
- /// @brief Compute the sum of squares (L2 norm squared) of the diff.
- Dtype sumsq_diff() const;
- /// @brief Scale the blob data by a constant factor.
- /*
- 功能:正规化data_。
- 说明:用到math_function.hpp中的caffe_scal()和caffe_gpu_scal()函数,就是对向量X乘上一个因子。
- */
- void scale_data(Dtype scale_factor);
- /// @brief Scale the blob diff by a constant factor.
- void scale_diff(Dtype scale_factor);
- /**
- * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
- * data_ of Blob other -- useful in Layer%s which simply perform a copy
- * in their Forward pass.
- *
- * This deallocates the SyncedMemory holding this Blob's data_, as
- * shared_ptr calls its destructor when reset with the "=" operator.
- */
- void ShareData(const Blob& other);//本Blob共享other的data_
- /**
- * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
- * diff_ of Blob other -- useful in Layer%s which simply perform a copy
- * in their Forward pass.
- *
- * This deallocates the SyncedMemory holding this Blob's diff_, as
- * shared_ptr calls its destructor when reset with the "=" operator.
- */
- void ShareDiff(const Blob& other);//本Blob共享other的diff_
- bool ShapeEquals(const BlobProto& other);//判断other与本Blob形状是否相同。
- protected:
- //data_指针,指针类型是shared_ptr,属于boost库的一个智能指针,这一部分主要用来申请内存存储data,data主要是正向传播的时候用的
- shared_ptr<SyncedMemory> data_;
- //diff_主要用来存储偏差,update data
- shared_ptr<SyncedMemory> diff_;
- //shape_存储Blob的形状
- vector<int> shape_;
- //count_表示Blob中的元素个数,也就是个数*通道数*高度*宽度
- int count_;
- //capacity表示当前的元素个数,因为Blob可能会reshape
- int capacity_;
- DISABLE_COPY_AND_ASSIGN(Blob);
- }; // class Blob
- } // namespace caffe
- #endif // CAFFE_BLOB_HPP_
顺便将实现部分也贴出来,方便对照:
- #include <climits>
- #include <vector>
- #include "caffe/blob.hpp"
- #include "caffe/common.hpp"
- #include "caffe/syncedmem.hpp"
- #include "caffe/util/math_functions.hpp"
- namespace caffe {
- template <typename Dtype>
- //该函数将num,channels,height,width传递给vector shape_
- void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
- const int width) {
- vector<int> shape(4);
- shape[0] = num;
- shape[1] = channels;
- shape[2] = height;
- shape[3] = width;
- Reshape(shape);
- }
- template <typename Dtype>
- void Blob<Dtype>::Reshape(const vector<int>& shape) {
- CHECK_LE(shape.size(), kMaxBlobAxes);
- count_ = 1;
- shape_.resize(shape.size());//重新定义vector shape_ 的size
- for (int i = 0; i < shape.size(); ++i) {
- CHECK_GE(shape[i], 0);//确保shape 每个元素为正数
- CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
- count_ *= shape[i];
- shape_[i] = shape[i];
- }
- //由于count_超过了当前capacity_ 因此需要重新分配内存空间
- if (count_ > capacity_) {
- capacity_ = count_;
- data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
- diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
- }
- }
- template <typename Dtype>// BlobShape 在caffe.proto 中定义
- void Blob<Dtype>::Reshape(const BlobShape& shape) {
- CHECK_LE(shape.dim_size(), kMaxBlobAxes);
- vector<int> shape_vec(shape.dim_size());
- for (int i = 0; i < shape.dim_size(); ++i) {
- shape_vec[i] = shape.dim(i);//dim 包含num,channels,height, width
- }
- Reshape(shape_vec);//用protobuf传递来dim 对shape_ 进行reshape
- }
- //用已知的Blob的shape来对shape_ 进行reshape
- template <typename Dtype>
- void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
- Reshape(other.shape());
- }
- //用num,channels,height, width 初始化
- template <typename Dtype>
- Blob<Dtype>::Blob(const int num, const int channels, const int height,
- const int width)
- // capacity_ must be initialized before calling Reshape
- : capacity_(0) {
- Reshape(num, channels, height, width);
- }
- //用shape 初始化
- template <typename Dtype>
- Blob<Dtype>::Blob(const vector<int>& shape)
- // capacity_ must be initialized before calling Reshape
- : capacity_(0) {
- Reshape(shape);
- }
- //返回cpu 中的数据
- template <typename Dtype>
- const Dtype* Blob<Dtype>::cpu_data() const {
- CHECK(data_);
- return (const Dtype*)data_->cpu_data();
- }
- // 清空cpu 数据
- template <typename Dtype>
- void Blob<Dtype>::set_cpu_data(Dtype* data) {
- CHECK(data);
- data_->set_cpu_data(data);
- }
- //返回gpu 中的数据
- template <typename Dtype>
- const Dtype* Blob<Dtype>::gpu_data() const {
- CHECK(data_);
- return (const Dtype*)data_->gpu_data();
- }
- //反向传播导数diff_ 操作函数,返回cpu 中的数据
- template <typename Dtype>
- const Dtype* Blob<Dtype>::cpu_diff() const {
- CHECK(diff_);
- return (const Dtype*)diff_->cpu_data();
- }
- //返回gpu 中的数据
- template <typename Dtype>
- const Dtype* Blob<Dtype>::gpu_diff() const {
- CHECK(diff_);
- return (const Dtype*)diff_->gpu_data();
- }
- template <typename Dtype>
- Dtype* Blob<Dtype>::mutable_cpu_data() {
- CHECK(data_);
- return static_cast<Dtype*>(data_->mutable_cpu_data());
- }
- template <typename Dtype>
- Dtype* Blob<Dtype>::mutable_gpu_data() {
- CHECK(data_);
- return static_cast<Dtype*>(data_->mutable_gpu_data());
- }
- template <typename Dtype>
- Dtype* Blob<Dtype>::mutable_cpu_diff() {
- CHECK(diff_);
- return static_cast<Dtype*>(diff_->mutable_cpu_data());
- }
- template <typename Dtype>
- Dtype* Blob<Dtype>::mutable_gpu_diff() {
- CHECK(diff_);
- return static_cast<Dtype*>(diff_->mutable_gpu_data());
- }
- //当前的blob 的data_ 指向已知blob的数据
- template <typename Dtype>
- void Blob<Dtype>::ShareData(const Blob& other) {
- CHECK_EQ(count_, other.count());
- data_ = other.data();
- }
- //当前的blob 的diff_ 指向已知blob的反向传播导数
- template <typename Dtype>
- void Blob<Dtype>::ShareDiff(const Blob& other) {
- CHECK_EQ(count_, other.count());
- diff_ = other.diff();
- }
- // The "update" method is used for parameter blobs in a Net, which are stored
- // as Blob<float> or Blob<double> -- hence we do not define it for
- // Blob<int> or Blob<unsigned int>.
- template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
- template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
- //Updata函数用于参数blob的更新(weight,bias 等减去对应的导数)
- template <typename Dtype>
- void Blob<Dtype>::Update() {
- // We will perform update based on where the data is located.
- switch (data_->head()) {
- case SyncedMemory::HEAD_AT_CPU://数据在cpu上,则在cpu上进行计算
- // perform computation on CPU
- caffe_axpy<Dtype>(count_, Dtype(-1),
- static_cast<const Dtype*>(diff_->cpu_data()),
- static_cast<Dtype*>(data_->mutable_cpu_data()));
- break;
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY//如果没有定义CPU_ONLY,且数据在gpu上,则在gpu上进行计算
- // perform computation on GPU
- caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
- static_cast<const Dtype*>(diff_->gpu_data()),
- static_cast<Dtype*>(data_->mutable_gpu_data()));
- #else
- NO_GPU;
- #endif
- break;
- default:
- LOG(FATAL) << "Syncedmem not initialized.";
- }
- }
- template <> unsigned int Blob<unsigned int>::asum_data() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- template <> int Blob<int>::asum_data() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- //返回data_ 中所有 element 的绝对值之和
- template <typename Dtype>
- Dtype Blob<Dtype>::asum_data() const {
- if (!data_) { return 0; }
- switch (data_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- return caffe_cpu_asum(count_, cpu_data());
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- {
- Dtype asum;
- caffe_gpu_asum(count_, gpu_data(), &asum);
- return asum;
- }
- #else
- NO_GPU;
- #endif
- case SyncedMemory::UNINITIALIZED:
- return 0;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
- }
- return 0;
- }
- template <> unsigned int Blob<unsigned int>::asum_diff() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- template <> int Blob<int>::asum_diff() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- //返回diff_ 中所有 element 的绝对值之和
- template <typename Dtype>
- Dtype Blob<Dtype>::asum_diff() const {
- if (!diff_) { return 0; }
- switch (diff_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- return caffe_cpu_asum(count_, cpu_diff());
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- {
- Dtype asum;
- caffe_gpu_asum(count_, gpu_diff(), &asum);
- return asum;
- }
- #else
- NO_GPU;
- #endif
- case SyncedMemory::UNINITIALIZED:
- return 0;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
- }
- return 0;
- }
- template <> unsigned int Blob<unsigned int>::sumsq_data() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- template <> int Blob<int>::sumsq_data() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- //返回 data_ 中所有 element 的平方和
- template <typename Dtype>
- Dtype Blob<Dtype>::sumsq_data() const {
- Dtype sumsq;
- const Dtype* data;
- if (!data_) { return 0; }
- switch (data_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- data = cpu_data();
- sumsq = caffe_cpu_dot(count_, data, data);
- break;
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- data = gpu_data();
- caffe_gpu_dot(count_, data, data, &sumsq);
- #else
- NO_GPU;
- #endif
- break;
- case SyncedMemory::UNINITIALIZED:
- return 0;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
- }
- return sumsq;
- }
- template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- template <> int Blob<int>::sumsq_diff() const {
- NOT_IMPLEMENTED;
- return 0;
- }
- //返回 diff_ 中所有 element 的平方和
- template <typename Dtype>
- Dtype Blob<Dtype>::sumsq_diff() const {
- Dtype sumsq;
- const Dtype* diff;
- if (!diff_) { return 0; }
- switch (diff_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- diff = cpu_diff();
- sumsq = caffe_cpu_dot(count_, diff, diff);
- break;
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- diff = gpu_diff();
- caffe_gpu_dot(count_, diff, diff, &sumsq);
- break;
- #else
- NO_GPU;
- #endif
- case SyncedMemory::UNINITIALIZED:
- return 0;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
- }
- return sumsq;
- }
- template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
- NOT_IMPLEMENTED;
- }
- template <> void Blob<int>::scale_data(int scale_factor) {
- NOT_IMPLEMENTED;
- }
- // 给data乘以scale_factor
- template <typename Dtype>
- void Blob<Dtype>::scale_data(Dtype scale_factor) {
- Dtype* data;
- if (!data_) { return; }
- switch (data_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- data = mutable_cpu_data();
- caffe_scal(count_, scale_factor, data);
- return;
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- data = mutable_gpu_data();
- caffe_gpu_scal(count_, scale_factor, data);
- return;
- #else
- NO_GPU;
- #endif
- case SyncedMemory::UNINITIALIZED:
- return;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
- }
- }
- template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
- NOT_IMPLEMENTED;
- }
- template <> void Blob<int>::scale_diff(int scale_factor) {
- NOT_IMPLEMENTED;
- }
- // 给diff乘以scale_factor
- template <typename Dtype>
- void Blob<Dtype>::scale_diff(Dtype scale_factor) {
- Dtype* diff;
- if (!diff_) { return; }
- switch (diff_->head()) {
- case SyncedMemory::HEAD_AT_CPU:
- diff = mutable_cpu_diff();
- caffe_scal(count_, scale_factor, diff);
- return;
- case SyncedMemory::HEAD_AT_GPU:
- case SyncedMemory::SYNCED:
- #ifndef CPU_ONLY
- diff = mutable_gpu_diff();
- caffe_gpu_scal(count_, scale_factor, diff);
- return;
- #else
- NO_GPU;
- #endif
- case SyncedMemory::UNINITIALIZED:
- return;
- default:
- LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
- }
- }
- //BlobProto 是定义在caffe.proto 中的一个message,其字段有 data,diff,shape,num,channels,height,width
- template <typename Dtype>
- bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
- if (other.has_num() || other.has_channels() ||
- other.has_height() || other.has_width()) {
- // Using deprecated 4D Blob dimensions --
- // shape is (num, channels, height, width).
- // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
- // methods as these index from the beginning of the blob shape, where legacy
- // parameter blobs were indexed from the end of the blob shape (e.g., bias
- // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
- return shape_.size() <= 4 &&
- LegacyShape(-4) == other.num() &&
- LegacyShape(-3) == other.channels() &&
- LegacyShape(-2) == other.height() &&
- LegacyShape(-1) == other.width();
- }
- vector<int> other_shape(other.shape().dim_size());
- for (int i = 0; i < other.shape().dim_size(); ++i) {
- other_shape[i] = other.shape().dim(i);
- }
- return shape_ == other_shape;
- }//检查当前的blob和已知的 other 的 shape 是否相同,相同返回true
- template <typename Dtype>
- void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
- if (source.count() != count_ || source.shape() != shape_) {
- if (reshape) {
- ReshapeLike(source);
- } else {
- LOG(FATAL) << "Trying to copy blobs of different sizes.";
- }
- }
- switch (Caffe::mode()) {
- case Caffe::GPU:
- if (copy_diff) {
- caffe_copy(count_, source.gpu_diff(),
- static_cast<Dtype*>(diff_->mutable_gpu_data()));
- } else {
- caffe_copy(count_, source.gpu_data(),
- static_cast<Dtype*>(data_->mutable_gpu_data()));
- }
- break;
- case Caffe::CPU:
- if (copy_diff) {
- caffe_copy(count_, source.cpu_diff(),
- static_cast<Dtype*>(diff_->mutable_cpu_data()));
- } else {
- caffe_copy(count_, source.cpu_data(),
- static_cast<Dtype*>(data_->mutable_cpu_data()));
- }
- break;
- default:
- LOG(FATAL) << "Unknown caffe mode.";
- }
- }//从source 拷贝数据,copy_diff控制是拷贝diff还是data
- template <typename Dtype>
- void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
- if (reshape) {
- vector<int> shape;
- if (proto.has_num() || proto.has_channels() ||
- proto.has_height() || proto.has_width()) {
- // Using deprecated 4D Blob dimensions --
- // shape is (num, channels, height, width).
- shape.resize(4);
- shape[0] = proto.num();
- shape[1] = proto.channels();
- shape[2] = proto.height();
- shape[3] = proto.width();
- } else {
- shape.resize(proto.shape().dim_size());
- for (int i = 0; i < proto.shape().dim_size(); ++i) {
- shape[i] = proto.shape().dim(i);
- }
- }
- Reshape(shape);
- } else {//如果不做reshape要求当前的blob的shape和proto传入的shape相同
- CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
- }
- // copy data
- Dtype* data_vec = mutable_cpu_data();
- for (int i = 0; i < count_; ++i) {
- data_vec[i] = proto.data(i);
- }//将proto传入的data拷贝到cpu数据
- if (proto.diff_size() > 0) {
- Dtype* diff_vec = mutable_cpu_diff();
- for (int i = 0; i < count_; ++i) {
- diff_vec[i] = proto.diff(i);
- }//将proto传入的diff 拷贝到cpu数据
- }
- }
- template <typename Dtype>
- void Blob<Dtype>::ToProto(BlobProto* proto, bool write_diff) const {
- proto->clear_shape();
- for (int i = 0; i < shape_.size(); ++i) {
- proto->mutable_shape()->add_dim(shape_[i]);
- }
- proto->clear_data();
- proto->clear_diff();
- const Dtype* data_vec = cpu_data();
- for (int i = 0; i < count_; ++i) {
- proto->add_data(data_vec[i]);//将data写入proto
- }
- if (write_diff) {
- const Dtype* diff_vec = cpu_diff();
- for (int i = 0; i < count_; ++i) {
- proto->add_diff(diff_vec[i]);//将diff写入proto
- }
- }
- }
- INSTANTIATE_CLASS(Blob);
- template class Blob<int>;
- template class Blob<unsigned int>;
- } // namespace caffe