【Caffe代码解析】SyncedMemory
功能:
Caffe的底层数据的切换(cpu模式和gpu模式),需要用到内存同步模块。
源码:头文件
#ifndef CAFFE_SYNCEDMEM_HPP_
#define CAFFE_SYNCEDMEM_HPP_
#include <cstdlib>
#include "caffe/common.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
inline void CaffeMallocHost(void** ptr, size_t size) {
*ptr = malloc(size);
CHECK(*ptr) << "host allocation of size " << size << " failed";
}
inline void CaffeFreeHost(void* ptr) {
free(ptr);
}
/**
* @brief Manages memory allocation and synchronization between the host (CPU)
* and device (GPU).
*
* TODO(dox): more thorough description.
*/
class SyncedMemory {
public:
SyncedMemory()
: cpu_ptr_(NULL), gpu_ptr_(NULL), size_(0), head_(UNINITIALIZED),
own_cpu_data_(false) {}
explicit SyncedMemory(size_t size)
: cpu_ptr_(NULL), gpu_ptr_(NULL), size_(size), head_(UNINITIALIZED),
own_cpu_data_(false) {}
~SyncedMemory();
const void* cpu_data();//获取cpu数据,返回void * 指针
void set_cpu_data(void* data);//用一个void * 指针修改指针
const void* gpu_data();//获取gpu数据,返回void * 指针
void* mutable_cpu_data();//获取可以更改cpu数据,返回void * 指针
void* mutable_gpu_data();//获取可以更改gpu数据,返回void * 指针
enum SyncedHead { UNINITIALIZED, HEAD_AT_CPU, HEAD_AT_GPU, SYNCED };//enum枚举值
SyncedHead head() { return head_; }//获得枚举值
size_t size() { return size_; }//获得数据大小
private:
void to_cpu();//转为cpu模式
void to_gpu(); //转为gpu模式
void* cpu_ptr_;//指向cpu的指针
void* gpu_ptr_;//指向gpu的指指针
size_t size_; //大小
SyncedHead head_; //数据存放的位置,枚举值之一
bool own_cpu_data_;//是否有cpu数据
DISABLE_COPY_AND_ASSIGN(SyncedMemory);
}; // class SyncedMemory
} // namespace caffe
#endif // CAFFE_SYNCEDMEM_HPP_
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
实现文件:
#include <cstring>
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
//析构函数,调用caffe函数来释放空间
SyncedMemory::~SyncedMemory() {
if (cpu_ptr_ && own_cpu_data_) {
CaffeFreeHost(cpu_ptr_);
}
//如果有gpu数据,也进行释放。
#ifndef CPU_ONLY
if (gpu_ptr_) {
CUDA_CHECK(cudaFree(gpu_ptr_));
}
#endif // CPU_ONLY
}
// 根据head信息,选择:1, 分类cpu空间,2.拷贝gpu数据值cpu
inline void SyncedMemory::to_cpu() {
switch (head_) {
case UNINITIALIZED:
CaffeMallocHost(&cpu_ptr_, size_);
caffe_memset(size_, 0, cpu_ptr_);
head_ = HEAD_AT_CPU;
own_cpu_data_ = true;
break;
case HEAD_AT_GPU:
#ifndef CPU_ONLY
if (cpu_ptr_ == NULL) {
CaffeMallocHost(&cpu_ptr_, size_);
own_cpu_data_ = true;
}
caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_);
head_ = SYNCED;
#else
NO_GPU;
#endif
break;
case HEAD_AT_CPU:
case SYNCED:
break;
}
}
// 根据head信息,选择:1, 分类gpu空间,2.拷贝cpu数据值gpu
inline void SyncedMemory::to_gpu() {
#ifndef CPU_ONLY
switch (head_) {
case UNINITIALIZED:
CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
caffe_gpu_memset(size_, 0, gpu_ptr_);
head_ = HEAD_AT_GPU;
break;
case HEAD_AT_CPU:
if (gpu_ptr_ == NULL) {
CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
}
caffe_gpu_memcpy(size_, cpu_ptr_, gpu_ptr_);
head_ = SYNCED;
break;
case HEAD_AT_GPU:
case SYNCED:
break;
}
#else
NO_GPU;
#endif
}
//返回cpu指针 void * 类型
const void* SyncedMemory::cpu_data() {
to_cpu();
return (const void*)cpu_ptr_;
}
// 设置cpu数据,利用另外一个指针的数据来初始化
void SyncedMemory::set_cpu_data(void* data) {
CHECK(data);
if (own_cpu_data_) {
CaffeFreeHost(cpu_ptr_);
}
cpu_ptr_ = data;//直接重置指针,
head_ = HEAD_AT_CPU;
own_cpu_data_ = false;//设false
}
//获得gpu指针
const void* SyncedMemory::gpu_data() {
#ifndef CPU_ONLY
to_gpu();
return (const void*)gpu_ptr_;
#else
NO_GPU;
#endif
}
//获得可更改的cpu指针
void* SyncedMemory::mutable_cpu_data() {
to_cpu();
head_ = HEAD_AT_CPU;
return cpu_ptr_;
}
//获得可更改的gpu指针
void* SyncedMemory::mutable_gpu_data() {
#ifndef CPU_ONLY
to_gpu();
head_ = HEAD_AT_GPU;
return gpu_ptr_;
#else
NO_GPU;
#endif
}
} // namespace caffe