6、Self-Taught Learning
- 总结:
1)就是自编码隐藏学习的特征,送入softmax分类器。
2)算是对于之前编写的代码的一个总结。
3)fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); 这个简单的输出准确率的代码写的好呀。
4)实验其实对于训练数据的label都整体加了1,说明了label只是标注和在测试中检测的作用,咋标无所谓。
5)
- 问题:
1)
2)
3)
4)
5)
- 想法:
1)
2)
3)
4)
5)
实验需要下载代码:stl_exercise.zip
stlExercise.m
clear;close all;clc; disp('当前正在执行的程序是:'); disp([mfilename('fullpath'),'.m']); %% CS294A/CS294W Self-taught Learning Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % self-taught learning. You will need to complete code in feedForwardAutoencoder.m % You will also need to have implemented sparseAutoencoderCost.m and % softmaxCost.m from previous exercises. % %% ====================================================================== % STEP 0: Here we provide the relevant parameters values that will % allow your sparse autoencoder to get good filters; you do not need to % change the parameters below. inputSize = 28 * 28;% 28 * 28=784 numLabels = 5;% 0-4有监督、5-9无监督,都是5 hiddenSize = 200; sparsityParam = 0.1; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 3e-3; % weight decay parameter beta = 3; % weight of sparsity penalty term maxIter = 400; %% ====================================================================== % STEP 1: Load data from the MNIST database % % This loads our training and test data from the MNIST database files. % We have sorted the data for you in this so that you will not have to % change it. % Load MNIST database files mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte'); mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set %labeledSet尺寸为[30596,1] labeledSet = find(mnistLabels >= 0 & mnistLabels <= 4); %unlabeledSet尺寸为[29404,1] unlabeledSet = find(mnistLabels >= 5); %round:Round to nearest integer %numTrain=15298,labeledSet=30596,所以训练集和测试集数量一样 numTrain = round(numel(labeledSet)/2); %把0到4的数据,作为训练集,二等分 %trainSet尺寸为[15298,1] trainSet = labeledSet(1:numTrain); testSet = labeledSet(numTrain+1:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet); %label整体加1,就是移动到1-5,这里平移和之前softmax实验的把0替换为10的意义不一样。 %这样替换label是完全对应不上,label都相对于实际数据大1 trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 display_network(trainData(:,1:100)); % Show the first 100 images %显示训练集前10个label,发现确实是所有的label都加1了 disp('显示训练集前10个样本的标签'); disp(trainLabels(1:10)); set(gcf,'NumberTitle','off'); set(gcf,'Name','显示训练集前100个数据'); testData = mnistData(:, testSet); testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2)); fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2)); fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2)); %% ====================================================================== % STEP 2: Train the sparse autoencoder % This trains the sparse autoencoder on the unlabeled training % images. % Randomly initialize the parameters theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ---------------------- % Find opttheta by running the sparse autoencoder on % unlabeledTrainingImages tic; opttheta = theta; % Use minFunc to minimize the function addpath minFunc/ options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % sparseAutoencoderCost.m satisfies this. options.maxIter = 400; % Maximum number of iterations of L-BFGS to run options.display = 'on'; [opttheta, loss] = minFunc( @(p) sparseAutoencoderCost(p, ... inputSize, hiddenSize, ... lambda, sparsityParam, ... beta, unlabeledData), ... theta, options); disp(['400次迭代的lbfgs的自编码,费时:',num2str(toc)]); %% ----------------------------------------------------- % Visualize weights %取出第一层的权值显示 W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize); figure; display_network(W1'); set(gcf,'NumberTitle','off'); set(gcf,'Name','稀疏自编码后的第一层的权系数'); print -djpeg weights.jpg %%====================================================================== %% STEP 3: Extract Features from the Supervised Dataset % % You need to complete the code in feedForwardAutoencoder.m so that the % following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... testData); %%====================================================================== %% STEP 4: Train the softmax classifier softmaxModel = struct; %% ----------------- YOUR CODE HERE ---------------------- % Use softmaxTrain.m from the previous exercise to train a multi-class % classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and % trainLabels tic; lambda = 1e-4; options.maxIter = 100; %注意由于中间层输出的特征,所以这里的输入尺寸为hiddenSize softmaxModel = softmaxTrain(hiddenSize, numLabels, lambda, ... trainFeatures, trainLabels, options); disp(['100次迭代的softmax训练,费时:',num2str(toc)]); %% ----------------------------------------------------- %%====================================================================== %% STEP 5: Testing %% ----------------- YOUR CODE HERE ---------------------- % Compute Predictions on the test set (testFeatures) using softmaxPredict % and softmaxModel % You will have to implement softmaxPredict in softmaxPredict.m %注意这里送入的,也是隐藏层输出的激活值 [pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score %下面这个准确率的计算的简单的语句 fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); %Test Accuracy: 98.254674% % (note that we shift the labels by 1, so that digit 0 now corresponds to % label 1) % % Accuracy is the proportion of correctly classified images % The results for our implementation was: % % Accuracy: 98.3% % % %% ----------------------------------------------------- %UFLDL中说不使用激活的特征,准确率只有96%,所以做一个对比试验。 %由于送入的是原始的像素,所以也要用原始的图像训练 softmaxModel = struct; tic; lambda = 1e-4; options.maxIter = 100; softmaxModel = softmaxTrain(inputSize, numLabels, lambda, ... trainData, trainLabels, options); disp(['100次迭代的softmax训练,费时:',num2str(toc)]); [pred] = softmaxPredict(softmaxModel, testData); fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); %96.764283%
feedForwardAutoencoder.m
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder. activation=sigmoid(bsxfun(@plus,W1*data,b1)); %------------------------------------------------------------------- end %------------------------------------------------------------------- % Here's an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end