Deep learning:十四(Softmax Regression练习)
Deep learning:十四(Softmax Regression练习)
前言:
这篇文章主要是用来练习softmax regression在多分类器中的应用,关于该部分的理论知识已经在前面的博文中Deep learning:十三(Softmax Regression)有所介绍。本次的实验内容是参考网页:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression。主要完成的是手写数字识别,采用的是MNIST手写数字数据库,其中训练样本有6万个,测试样本有1万个,且数字是0~9这10个。每个样本是一张小图片,大小为28*28的。
实验环境:matlab2012a
实验基础:
这次实验只用了softmax模型,也就是说没有隐含层,而只有输入层和输出层,因为实验中并没有提取出MINST样本的特征,而是直接用的原始像素特征。实验中主要是计算系统的损失函数和其偏导数,其计算公式如下所示:
一些matlab函数:
sparse:
生成一个稀疏矩阵,比如说sparse(A, B, k),,其中A和B是个向量,k是个常量。这里生成的稀疏矩阵的值都为参数k,稀疏矩阵位置值坐标点有A和B相应的位置点值构成。
full:
生成一个正常矩阵,一般都是利用稀疏矩阵来还原的。
实验错误:
按照作者给的starter code,结果连数据都加载不下来,出现如下错误提示:Error using permute Out of memory. Type HELP MEMORY for your options. 结果跟踪定位到loadMNISTImages.m文件中的images = permute(images,[2 1 3])这句代码,究其原因就是说images矩阵过大,在有限内存下不能够将其进行维度旋转变换。可是这个数据已经很小了,才几十兆而已,参考了很多out of memory的方法都不管用,后面直接把改句的前面一句代码images = reshape(images, numCols, numRows, numImages);改成images = reshape(images, numRows, numCols, numImages);反正实现的效果都是一样的。因为原因是内存问题,所以要么用64bit的matlab,要买自己对该函数去优化下,节省运行过程中的内存。
实验结果:
Accuracy: 92.640%
和网页教程中给的结果非常相近了。
实验主要部分代码:
softmaxExercise.m:
%% CS294A/CS294W Softmax Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % softmax exercise. You will need to write the softmax cost function % in softmaxCost.m and the softmax prediction function in softmaxPred.m. % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % (However, you may be required to do so in later exercises) %%====================================================================== %% STEP 0: Initialise constants and parameters % % Here we define and initialise some constants which allow your code % to be used more generally on any arbitrary input. % We also initialise some parameters used for tuning the model. inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28) numClasses = 10; % Number of classes (MNIST images fall into 10 classes) lambda = 1e-4; % Weight decay parameter %%====================================================================== %% STEP 1: Load data % % In this section, we load the input and output data. % For softmax regression on MNIST pixels, % the input data is the images, and % the output data is the labels. % % Change the filenames if you've saved the files under different names % On some platforms, the files might be saved as % train-images.idx3-ubyte / train-labels.idx1-ubyte images = loadMNISTImages('train-images.idx3-ubyte'); labels = loadMNISTLabels('train-labels.idx1-ubyte'); labels(labels==0) = 10; % Remap 0 to 10 inputData = images; % For debugging purposes, you may wish to reduce the size of the input data % in order to speed up gradient checking. % Here, we create synthetic dataset using random data for testing % DEBUG = true; % Set DEBUG to true when debugging. DEBUG = false; if DEBUG inputSize = 8; inputData = randn(8, 100); labels = randi(10, 100, 1); end % Randomly initialise theta theta = 0.005 * randn(numClasses * inputSize, 1);%输入的是一个列向量 %%====================================================================== %% STEP 2: Implement softmaxCost % % Implement softmaxCost in softmaxCost.m. [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, inputData, labels); %%====================================================================== %% STEP 3: Gradient checking % % As with any learning algorithm, you should always check that your % gradients are correct before learning the parameters. % if DEBUG numGrad = computeNumericalGradient( @(x) softmaxCost(x, numClasses, ... inputSize, lambda, inputData, labels), theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); % Compare numerically computed gradients with those computed analytically diff = norm(numGrad-grad)/norm(numGrad+grad); disp(diff); % The difference should be small. % In our implementation, these values are usually less than 1e-7. % When your gradients are correct, congratulations! end %%====================================================================== %% STEP 4: Learning parameters % % Once you have verified that your gradients are correct, % you can start training your softmax regression code using softmaxTrain % (which uses minFunc). options.maxIter = 100; %softmaxModel其实只是一个结构体,里面包含了学习到的最优参数以及输入尺寸大小和类别个数信息 softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ... inputData, labels, options); % Although we only use 100 iterations here to train a classifier for the % MNIST data set, in practice, training for more iterations is usually % beneficial. %%====================================================================== %% STEP 5: Testing % % You should now test your model against the test images. % To do this, you will first need to write softmaxPredict % (in softmaxPredict.m), which should return predictions % given a softmax model and the input data. images = loadMNISTImages('t10k-images.idx3-ubyte'); labels = loadMNISTLabels('t10k-labels.idx1-ubyte'); labels(labels==0) = 10; % Remap 0 to 10 inputData = images; size(softmaxModel.optTheta) size(inputData) % You will have to implement softmaxPredict in softmaxPredict.m [pred] = softmaxPredict(softmaxModel, inputData); acc = mean(labels(:) == pred(:)); fprintf('Accuracy: %0.3f%%\n', acc * 100); % Accuracy is the proportion of correctly classified images % After 100 iterations, the results for our implementation were: % % Accuracy: 92.200% % % If your values are too low (accuracy less than 0.91), you should check % your code for errors, and make sure you are training on the % entire data set of 60000 28x28 training images % (unless you modified the loading code, this should be the case)
softmaxCost.m
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels) % numClasses - the number of classes % inputSize - the size N of the input vector % lambda - weight decay parameter % data - the N x M input matrix, where each column data(:, i) corresponds to % a single test set % labels - an M x 1 matrix containing the labels corresponding for the input data % % Unroll the parameters from theta theta = reshape(theta, numClasses, inputSize);%将输入的参数列向量变成一个矩阵 numCases = size(data, 2);%输入样本的个数 groundTruth = full(sparse(labels, 1:numCases, 1));%这里sparse是生成一个稀疏矩阵,该矩阵中的值都是第三个值1 %稀疏矩阵的小标由labels和1:numCases对应值构成 cost = 0; thetagrad = zeros(numClasses, inputSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost and gradient for softmax regression. % You need to compute thetagrad and cost. % The groundTruth matrix might come in handy. M = bsxfun(@minus,theta*data,max(theta*data, [], 1)); M = exp(M); p = bsxfun(@rdivide, M, sum(M)); cost = -1/numCases * groundTruth(:)' * log(p(:)) + lambda/2 * sum(theta(:) .^ 2); thetagrad = -1/numCases * (groundTruth - p) * data' + lambda * theta; % ------------------------------------------------------------------ % Unroll the gradient matrices into a vector for minFunc grad = [thetagrad(:)]; end
softmaxTrain.m:
function [softmaxModel] = softmaxTrain(inputSize, numClasses, lambda, inputData, labels, options) %softmaxTrain Train a softmax model with the given parameters on the given % data. Returns softmaxOptTheta, a vector containing the trained parameters % for the model. % % inputSize: the size of an input vector x^(i) % numClasses: the number of classes % lambda: weight decay parameter % inputData: an N by M matrix containing the input data, such that % inputData(:, c) is the cth input % labels: M by 1 matrix containing the class labels for the % corresponding inputs. labels(c) is the class label for % the cth input % options (optional): options % options.maxIter: number of iterations to train for if ~exist('options', 'var') options = struct; end if ~isfield(options, 'maxIter') options.maxIter = 400; end % initialize parameters theta = 0.005 * randn(numClasses * inputSize, 1); % Use minFunc to minimize the function addpath minFunc/ options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % softmaxCost.m satisfies this. minFuncOptions.display = 'on'; [softmaxOptTheta, cost] = minFunc( @(p) softmaxCost(p, ... numClasses, inputSize, lambda, ... inputData, labels), ... theta, options); % Fold softmaxOptTheta into a nicer format softmaxModel.optTheta = reshape(softmaxOptTheta, numClasses, inputSize); softmaxModel.inputSize = inputSize; softmaxModel.numClasses = numClasses; end
softmaxPredict.m:
function [pred] = softmaxPredict(softmaxModel, data) % softmaxModel - model trained using softmaxTrain % data - the N x M input matrix, where each column data(:, i) corresponds to % a single test set % % Your code should produce the prediction matrix % pred, where pred(i) is argmax_c P(y(c) | x(i)). % Unroll the parameters from theta theta = softmaxModel.optTheta; % this provides a numClasses x inputSize matrix pred = zeros(1, size(data, 2)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute pred using theta assuming that the labels start % from 1. [nop, pred] = max(theta * data); % pred= max(peed_temp); % --------------------------------------------------------------------- end
参考资料:
Deep learning:十三(Softmax Regression)
http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression