NOIP 2002 自由落体 解题报告

本题就是数学题,比较繁琐的是误差和特殊情况。

假设一个球i,它掉落到车顶的时间为t1,掉落到地上的时间为t2,则如果掉落到车顶时车的后排已经经过该点,或掉落到地上时车的前排还没有到达该点,则该点不会被接受。于是有:

i<=s+l-vt1,i>=s-vt2

综合考虑1e-5的误差,我们得出i的区间:[s-vt2-e,s+l-vt1+e]∩[0,n-1],而接受的球数就是该区间内的整数个数。

  代码如下(其实我觉得这个代码有不好的地方,但是能AC。。数据不强大。。):

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
	double t1, t2;
	double h, s1, v, l, k;
	double d1, d2;
	int g = 10;
	int n;
	scanf("%lf%lf%lf%lf%lf%d", &h, &s1, &v, &l, &k, &n);
	t1 = sqrt(2*(h -(k)) / g);
	t2 = sqrt(2 * h / g);
	d2 = s1 - v * t1 + l;
	d1 = s1 - v * t2;
//	printf("[%lf, %lf]\n", d1, d2);
	if(d1 < 0){
		d1 = 0;
	}
	if(d2 > n){
		d2 = n;
	}
	if(d1 > d2){
		d1 = d2;
	}
//	printf("[%lf, %lf]\n", d1, d2);
	printf("%d\n", (int)(d2) - (int)(d1));
	return 0;
}

  

posted @ 2011-07-25 10:31  zqynux  阅读(808)  评论(0编辑  收藏  举报