NOIP--OI省选算法之树状数组

树状数组

1,用途 
树状数组是一种非常优雅的数据结构.当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一区间元素之和的时候,可以考虑使用树状数组. 
换句话说,树状数组最基本的应用: 
对于一个数组,如果有多次操作,每次的操作有两种:1、修改数组中某一元素的值,2、求和,求数组元素a[1]+a[2]+…a[num]的和。 
2,复杂度 
最直接的算法可以在O(1)时间内完成一次修改,但是需要O(n)时间来进行一次查询.而树状数组的修改和查询均可在O(log(n))的时间内完成. 
3,生成 
设a[1...N]为原数组,定义c[1...N]为对应的树状数组: 
c[i] = a[i - 2^k + 1] + a[i - 2^k + 2] + ... + a[i] 
其中k为i的二进制表示末尾0的个数,所以2^k即为i的二进制表示的最后一个1的权值. 
所以2^k可以表示为n&(n^(n-1))或更简单的n&(-n). 

Cpp代码  

  1. int lowbit(int n)  

  2. {  

  3.     return n& (-n);    

  4.         //or return n&(n^(n-1));  

  5. }  

 


也就是说,把k表示成二进制1***10000,那么c[k]就是1***00001 + 1***00010 + ... + 1***10000这一段数的和。 
举例: 

 
可以看出:设节点编号为x,那么这个节点管辖的区间为2^k个元素。(其中k为x二进制末尾0的个数) 
C1 = A1 
C2 = A1 + A2 
C3 = A3 
C4 = A1 + A2 + A3 + A4 
C5 = A5 
C6 = A5 + A6 
C7 = A7 
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 
... 
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16 
4,修改 
修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。 
对a[n]进行修改后,需要相应的修改c数组中的p1, p2, p3...等一系列元素 
其中p1 = n,  pi+1 = pi + lowbit(pi) 
所以修改原数组中的第n个元素可以实现为: 

Cpp代码  

  1. void Modify(int n, int delta)  

  2. {  

  3.     while(n <= N)  

  4.     {   

  5.         c[n] += delta;   

  6.         n += lowbit(n);  

  7.     }  

  8. }  




5,求和 
当要查询a[1],a[2]...a[n]的元素之和时,需要累加c数组中的q1, q2, q3...等一系列元素 
其中q1  = n,qi+1 = qi - lowbit(qi) 
所以计算a[1] + a[2] + .. a[n]可以实现为: 

Cpp代码  

  1. int Sum(int n)  

  2. {  

  3.     int result = 0;  

  4.     while(n != 0)  

  5.     {   

  6.         result += c[n];   

  7.         n -= lowbit(n);   

  8.     }  

  9.     return result;  

  10. }  


为什么是效率是log(n)的呢?以下给出证明: 
n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。 

换句话说: 
若需改变a[i],则c[i]、c[i+lowbit(i)]、c[i+lowbit(i)+lowbit(i+lowbit(i)]……就是需要改变的 c数组中的元素。 
若需查询s[i],则c[i]、c[i-lowbit(i)]、c[i-lowbit(i)-lowbit(i- lowbit(i))]……就是需要累加的c数组中的元素。 

6,与线段树的比较 
树状数组是一个可以很高效的进行区间统计的数据结构。在思想上类似于线段树,比线段树节省空间,编程复杂度比线段树低,但适用范围比线段树小。 

7,应用
 
(1)http://acm.pku.edu.cn/JudgeOnline/problem?id=2155 
首先对于每个数A 
定义集合up(A)表示{A, A+lowestbit(A), A+lowestbit(A)+lowestbit(A+lowestbit(A))...} 
定义集合down(A)表示{A, A-lowestbit(A), A-lowestbit(A)-lowestbit(A-lowestbit(A)) ... , 0}。 
可以发现对于任何A<B,up(A)和down(B)的交集有且仅有一个数。 
于是对于这道题目来说,翻转一个区间[A,B](为了便于讨论先把原问题降为一维的情况),我们可以把down(B)的所有元素的翻转次数+1,再把down(A-1)的所有元素的翻转次数-1。而每次查询一个元素C时,只需要统计up(C)的所有元素的翻转次数之和,即为C实际被翻转的次数。 
(2)http://acm.pku.edu.cn/JudgeOnline/problem?id=3321 
一棵树上长了苹果,每一个树枝节点上有长苹果和不长苹果两种状态,两种操作,一种操作能够改变树枝上苹果的状态,另一种操作询问某一树枝节点一下的所有的苹果有多少。具体做法是做一次dfs,记下每个节点的开始时间low[i]和结束时间high[i],那么对于i节点的所有子孙的开始时间和结束时间都应位于low[i]和high[i]之间,另外用一个数组c[i]记录附加在节点i上的苹果的个数,然后用树状数组统计low[i]到high[i]之间的附加苹果总数。这里用树状数组统计区间可以用Sum(high[i])-Sum(low[i]-1)来计算。 

Cpp代码  

  1. #include <stdio.h>  

  2. #include <string.h>  

  3. #include <vector>  

  4. using namespace std;  

  5.   

  6. //vector<int> g[100005];  

  7. struct Node  

  8. {  

  9.     int v;  

  10.     struct Node *next;  

  11. }g[100005];  

  12. int n,m,cnt,low[100005],high[100005],c[100005],flag[100005];  

  13. bool mark[100005];  

  14.   

  15. void dfs(int v)  

  16. {  

  17.     struct Node *p=g[v].next;  

  18.     mark[v]=true;  

  19.     cnt++;  

  20.     low[v]=cnt;  

  21.     while(p)  

  22.     {  

  23.         if(!mark[p->v])  

  24.             dfs(p->v);  

  25.         p=p->next;  

  26.     }  

  27.     high[v]=cnt;  

  28. }  

  29. int lowbit(int k)  

  30. {  

  31.     return k&(-k);  

  32. }  

  33. void Modify(int num, int v)  

  34. {  

  35.     while(num <= n)  

  36.     {  

  37.         c[num]+=v;  

  38.         num+=lowbit(num);  

  39.     }  

  40. }  

  41. int Sum(int num)  

  42. {  

  43.     int ans=0;  

  44.     while(num > 0)  

  45.     {  

  46.         ans+=c[num];  

  47.         num-=lowbit(num);  

  48.     }  

  49.     return ans;  

  50. }  

  51.   

  52. int main()  

  53. {  

  54.     int i,a,b,ans;  

  55.     char temp[10];  

  56.     struct Node *p;  

  57.     //freopen("in.txt","r",stdin);  

  58.     scanf("%d",&n);  

  59.     memset(g,0,sizeof(g));  

  60.     for(i=1; i<n; i++)  

  61.     {  

  62.         scanf("%d%d",&a,&b);  

  63.         p=new Node;  

  64.         p->next=g[a].next;  

  65.         p->v=b;  

  66.         g[a].next=p;  

  67.         p=new Node;  

  68.         p->next=g[b].next;  

  69.         p->v=a;  

  70.         g[b].next=p;  

  71.     }  

  72.     memset(mark,false,sizeof(mark));  

  73.     memset(c,0,sizeof(c));  

  74.     for(i=1; i<=n; i++)  

  75.         flag[i]=1;  

  76.     cnt=0;  

  77.     dfs(1);  

  78.     scanf("%d",&m);  

  79.     while(m--)  

  80.     {  

  81.         scanf("%s",temp);  

  82.         if(temp[0] == 'Q')  

  83.         {  

  84.             scanf("%d",&a);  

  85.             ans=high[a]-low[a]+1+Sum(high[a])-Sum(low[a]-1);  

  86.             printf("%d\n",ans);  

  87.         }  

  88.         else  

  89.         {  

  90.             scanf("%d",&a);  

  91.             if(flag[a]) Modify(low[a],-1);  

  92.             else Modify(low[a],1);  

  93.             flag[a]^=1;  

  94.         }  

  95.     }  

  96.     return 0;  

  97. }  

 

(3)http://acm.pku.edu.cn/JudgeOnline/problem?id=2481 
给n个区间[Si,Ei],区间[Sj,Ej]< [Si,Ei] 有 Si <= Sj and Ej <= Ei and Ei - Si > Ej – Sj。按y坐标从小到达,x坐标从大到小的顺序排序,然后从后往前扫描,记录i之前所有的j区间Sj<Si的个数,这个用树状数组实现。扫描一遍可得出结果。 

Cpp代码  

  1. #include <stdio.h>  

  2. #include <string>  

  3. #include <algorithm>  

  4. using namespace std;  

  5.   

  6. struct P  

  7. {  

  8.     int x,y,id;  

  9. }p[100005];  

  10. int n,a[100005],max_n,b[100005];  

  11.   

  12. int lowbit(int k)  

  13. {  

  14.     return k&(-k);  

  15. }  

  16. void Modify(int num, int v)  

  17. {  

  18.     while(num <= max_n)  

  19.     {  

  20.         a[num]+=v;  

  21.         num+=lowbit(num);  

  22.     }  

  23. }  

  24. int Sum(int num)  

  25. {  

  26.     int ans=0;  

  27.     if(num <= 0) return 0;  

  28.     while(num)  

  29.     {  

  30.         ans+=a[num];  

  31.         num-=lowbit(num);  

  32.     }  

  33.     return ans;  

  34. }  

  35. bool operator <(const P a, const P b)  

  36. {  

  37.     if(a.y == b.y) return a.x > b.x;  

  38.     return a.y < b.y;  

  39. }  

  40.   

  41. int main()  

  42. {  

  43.     int i;  

  44.     //freopen("in.txt","r",stdin);  

  45.     while(scanf("%d",&n), n)  

  46.     {  

  47.         max_n=0;  

  48.         for(i=0; i<n; i++)  

  49.         {  

  50.             scanf("%d%d",&p[i].x,&p[i].y);  

  51.             p[i].id=i;  

  52.             p[i].x++;  

  53.             p[i].y++;  

  54.             if(p[i].y > max_n) max_n=p[i].y;  

  55.         }  

  56.         sort(p,p+n);  

  57.         memset(a,0,sizeof(a));  

  58.         for(i=n-1; i>=0; i--)  

  59.         {  

  60.             if(i != n-1 && p[i].y == p[i+1].y && p[i].x == p[i+1].x)  

  61.                 b[p[i].id]=b[p[i+1].id];  

  62.             else  

  63.                 b[p[i].id]=Sum(p[i].x);  

  64.             Modify(p[i].x,1);  

  65.         }  

  66.         for(i=0; i<n; i++)  

  67.         {  

  68.             if(i) printf(" ");  

  69.             printf("%d",b[i]);  

  70.         }  

  71.         printf("\n");  

  72.     }  

  73.     return 0;  

  74. }  


(4)用树状数组求区间第K小元素 
算法的时间复杂度是O(log(n))的,如果要求在线计算的话显然很有优势。 
基本思路是: 
先开一个数组,其中记录某个数出现次数,每输入一个树,相当于将该数出现次数加1,对应到树状数组中就相当于insert(t, 1),统计的时候,可以利用树状数组的求和,既可以二分枚举,也可以利用数的二进制表示,下面的代码有效地利用了数的二进制表示。 

Cpp代码  

    1. #include <iostream>  

    2. using namespace std;  

    3.   

    4. #define maxn 1<<20  

    5. int n,k;  

    6. int c[maxn];  

    7.   

    8. int lowbit(int x){  

    9.     return x&-x;  

    10. }  

    11.   

    12. void insert(int x,int t){  

    13.        while(x<maxn){  

    14.           c[x]+=t;  

    15.           x+=lowbit(x);  

    16.        }  

    17. }  

    18. int find(int k){  

    19.     int cnt=0,ans=0;  

    20.     for(int i=20;i>=0;i--){  

    21.         ans+=(1<<i);  

    22.         if(ans>=maxn || cnt+c[ans]>=k)ans-=(1<<i);  

    23.         else cnt+=c[ans];  

    24.     }  

    25.     return ans+1;  

    26. }  

    27. void input(){  

    28.        memset(c,0,sizeof(c));  

    29.        int t;  

    30.        scanf("%d%d",&n,&k);  

    31.        for(int i=0;i<n;i++){  

    32.             scanf("%d",&t);  

    33.             insert(t,1);  

    34.        }  

    35.        printf("%d\n",find(k));  

    36. }  

    37. int main(){  

    38.     int cases;  

    39.     scanf("%d",&cases);  

    40.     while(cases--){  

    41.         input();  

    42.     }  

    43.     return 0;  

    44. }  

    45.  

      NOIP信息学视频地址

      视频地址

      链接:https://pan.baidu.com/s/1tHo1DFMaDuMZAemNH60dmw 
      提取码:7jgr

posted @ 2020-10-30 13:23  tianli3151  阅读(116)  评论(0编辑  收藏  举报