07 2023 档案

摘要:import torch from Utils.utils import * def getHighLowFre(image): f = torch.fft.fft2(image) # 计算频率 freqs = torch.fft.fftfreq(image.shape[-1]) # print(f 阅读全文
posted @ 2023-07-29 15:00 helloWorldhelloWorld 阅读(15) 评论(0) 推荐(0) 编辑
摘要:import numpy import torch import torch.nn.functional as F from torchvision import models class Vgg19(torch.nn.Module): def __init__(self, requires_gra 阅读全文
posted @ 2023-07-29 14:49 helloWorldhelloWorld 阅读(6) 评论(0) 推荐(0) 编辑
摘要:f = torch.fft.fft2(image) # 计算频率 freqs = torch.fft.fftfreq(image.shape[-1]) print(freqs) # 设定阈值,用于分离高频和低频信息 threshold = 0.1 # 创建掩码,用于分离高频和低频信息 mask = 阅读全文
posted @ 2023-07-24 16:10 helloWorldhelloWorld 阅读(20) 评论(0) 推荐(0) 编辑
摘要:import torch from torch import nn import numpy as np import matplotlib.pyplot as plt from PIL import Image from torchvision import transforms from mat 阅读全文
posted @ 2023-07-24 09:18 helloWorldhelloWorld 阅读(53) 评论(0) 推荐(0) 编辑
摘要: 阅读全文
posted @ 2023-07-17 16:00 helloWorldhelloWorld 阅读(16) 评论(0) 推荐(0) 编辑
摘要:1. 声明教师,学生网络 backbone_model = Net(gps=opt.gps, blocks=opt.blocks) backbone_model = backbone_model.to(device) ema_model = Net(gps=opt.gps, blocks=opt.b 阅读全文
posted @ 2023-07-17 15:59 helloWorldhelloWorld 阅读(56) 评论(0) 推荐(0) 编辑
摘要:1、导入pyiqa包(要求torch>1.10) 2、外网下载niqe_modelparameters.mat、brisque_svm_weights.pth 3、把外网下载的两个文件放在制定目录(.cache/......),ctrl+H打开ubuntu隐藏文件夹 阅读全文
posted @ 2023-07-02 19:48 helloWorldhelloWorld 阅读(213) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示