CSP-S 2019 简要题解

从这里开始

      又考炸了,sad.....明年应该在准备高考了,考完把坑填了好了。

      一半题都被卡常,qswl。[我汤姆要报警.jpg]

      dfs 怎么这么慢呀,sad.....

      i7 牛逼!

      写的比较混乱,可以将就着看就看吧。

    Day 1

    Problem A

       考虑求出最高位是 1 还是 0,可以推出剩下的 $n - 1$ 位二进制数在 $n - 1$ 格雷码的排名。

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    template <typename T>
    boolean chkmin(T& a, T b) {
    	return (a > b) ? (a = b, true) : false;
    }
    template <typename T>
    boolean chkmax(T& a, T b) {
    	return (a < b) ? (a = b, true) : false;
    }
    
    #define forv(_i, _vec) for (vector<int>::iterator (_i) = (_vec).begin(); (_i) != (_vec).end(); (_i)++)
    
    #define ull unsigned long long
    
    int n;
    ull k;
    
    char ans[70];
    
    int main() {
    	freopen("code.in", "r", stdin);
    	freopen("code.out", "w", stdout);
    	scanf("%d%llu", &n, &k);
    	for (int i = n; i; i--) {
    		ull k0 = 1ull << (i - 1);
    		if (k >= k0) {
    			k -= k0;
    			k = k0 - k - 1;
    			ans[i] = '1';
    		} else {
    			ans[i] = '0';
    		}
    	}
    	reverse(ans + 1, ans + n + 1);
    	puts(ans + 1);
    	return 0;
    }

    Problem B

      考虑计算以每个位置结尾的串的个数。

      把左括号看做 1,右括号看做 0,考虑充要条件是前缀和大于等于 0 且最终和为 0。

      单调栈维护一下即可。

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    template <typename T>
    boolean chkmin(T& a, T b) {
    	return (a > b) ? (a = b, true) : false;
    }
    template <typename T>
    boolean chkmax(T& a, T b) {
    	return (a < b) ? (a = b, true) : false;
    }
    
    #define forv(_i, _vec) for (vector<int>::iterator (_i) = (_vec).begin(); (_i) != (_vec).end(); (_i)++)
    
    typedef class Input {
    	public:
    
    } Input;
    
    Input& operator >> (Input& in, int& u) {
    	char x;
    	int flag = 1;
    	while (~(x = getchar()) && (x != '-') && !(x >= '0' && x <= '9'));
    	if (x == '-') {
    		flag = -1;
    		x = getchar();
    	}
    	for (u = x - '0'; ~(x = getchar()) && (x >= '0' && x <= '9'); u = u * 10+ x - '0');
    	u *= flag;
    	return in;
    }
    
    Input in;
    
    #define ull unsigned long long
    
    const int N = 500005;
    
    typedef class Data {
    	public:
    		int s, c;
    
    		Data() {	}
    		Data(int s, int c) : s(s), c(c) {	}
    } Data;
    
    int n;
    char s[N];
    int sum[N];
    ull g[N];
    vector<int> G[N];
    
    int tp;
    Data stk[N];
    void dfs(int p, int fa) {
    	sum[p] = sum[fa] + ((s[p] == '(') ? (1) : (-1));
    	int oldtp = tp;
    	while (tp > 1 && sum[p] < stk[tp].s)
    		tp--;
    	Data oldv;
    	if (stk[tp].s == sum[p]) {
    		oldv = stk[tp];
    		stk[tp].c++;
    	} else {
    		oldv = stk[tp + 1];
    		stk[++tp] = Data(sum[p], 1);
    	}
    	g[p] = g[fa] + stk[tp].c - 1;
    //	cerr << p << " " << g[p] << '\n';
    	forv (e, G[p]) {
    		dfs(*e, p);
    	}
    	stk[tp] = oldv;
    	tp = oldtp;
    }
    
    int main() {
    	freopen("brackets.in", "r", stdin);
    	freopen("brackets.out", "w", stdout);
    	in >> n;
    	scanf("%s", s + 1);
    	for (int i = 2, x; i <= n; i++) {
    		in >> x;
    		G[x].push_back(i);
    	}
    	stk[tp = 1] = Data(0, 1);
    	dfs(1, 0);
    	ull ans = 0;
    	for (int i = 1; i <= n; i++) {
    		ans = ans ^ (1ull * i * g[i]);
    	}
    	printf("%llu\n", ans);
    //	cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s";
    	return 0;
    }

    Problem C

      这题都没当场过。sad.....

      不知道为啥之前的做法这么复杂,看起好像绕了一个弯路。好像考虑一下菊花的情况这题就好想多了。

      考虑一下一个足够强的一次交换能实现的必要条件,然后猜它是充要的那个并查集维护就没了。我应该是智障。

      考虑字典序贪心。

      当 $n = 1$ 的时候,直接输出答案就行了。

      假设点 $i$ 最终要到 $p_i$,那么在树上加入一条有向路径 $i \rightarrow p_i$。 

      考虑每次寻找最小的合法的点,问题变成怎么判断能否加入一条路径 $i \rightarrow p_i$。

      首先不难注意到任意一条边在同一方向会被经过恰好 1 次,以及当 $n > 1$ 的时候 $p_i \neq i$。

      考虑进入点 $x$ 和离开点 $x$ 的路径最终大概形如:

       可以发现,把当前点看成它的一个子树,那么每条路径将恰好从它的一个子树到另外一个子树。考虑把原来判断合法的变成这样一个条件:合法当且仅当每个点的所有子树恰好形成 1 个环,并且任意两条路径都没有边的相交(指同一方向)。

      考虑必要性

    • 不难发现周围几条边的操作顺序是唯一的,因为每次只可能操作连接 $x$ 和 $p_x$ 所在子树根的边。如果存在超过 1 个环,那么一定无解,
    • 第二点比较显然。

      考虑充分性,当只有 1 个点的时候显然成立。

      当 $n > 1$ 的时候,考虑每次操作一条边$(x, y)$,满足 $p_x$ 在以 $x$ 为根,$y$ 的子树内,$p_y$ 在以 $y$ 为根,$x$ 的子树内。

      首先证明这样一条边一定存在,考虑任取一个点 $x$,设它的 $p_x$ 在 $y$ 的子树内,如果 $(x, y)$ 不满足条件,那么我们删掉这条边(不是题目中的删除操作),令 $x' = y$。因为树是有限的,所以这一过程是有限的,所以一定会停止。

      考虑找到这一条边后,操作它,不难证明新得到的两棵树仍然满足上述条件或大小等于 1。

      然后用并查集判一下就好了。

      时间复杂度 $O(Tn^2)$。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    const int N = 2005;
    
    typedef class Edge {
    	public:
    		int ed, nx;
    
    		Edge() {	}
    		Edge(int ed, int nx) : ed(ed), nx(nx) {	}
    } Edge;
    
    typedef class MapManager {
    	public:
    		int h[N];
    		vector<Edge> E;
    
    		void init(int n) {	
    			memset(h, -1, sizeof(int) * (n + 1));
    			E.clear();
    		}
    
    		void add_edge(int u, int v) {
    			E.push_back(Edge(v, h[u]));
    			h[u] = (signed) E.size() - 1;
    		}
    		Edge& operator [] (int p) {
    			return E[p];
    		}
    } MapManager;
    
    int T, n, n2;
    int deg[N];
    int pos[N];
    MapManager g;
    int uf[N * 3];
    int fa[N], fe[N];
    bitset<N * 2> vise;
    bitset<N> occ, vis;
    
    int find(int x) {
    	return uf[x] == x ? x : (uf[x] = find(uf[x]));
    }
    
    void dfs(int p, int fa, int fe) {
    	if (!occ.test(p) && fa && (deg[p] == 1 || (find(n2 + p) ^ find(fe ^ 1))))
    		vis.set(p);
    	::fa[p] = fa, ::fe[p] = fe;
    	for (int i = g.h[p]; ~i; i = g[i].nx) {
    		int e = g[i].ed;
    		if (e == fa)
    			continue;
    		if (vise.test(i))
    			continue;
    		if ((deg[p] != 2 - !fa || (!occ.test(p) && deg[p] == 2)) && find(fe ^ 1) == find(i))
    			continue;
    		dfs(e, p, i);
    	}
    }
    
    void solve() {
    	scanf("%d", &n);
    	g.init(n);
    	for (int i = 1; i <= n; i++) {
    		scanf("%d", pos + i);
    	}
    	memset(deg, 0, sizeof(int) * (n + 1));
    	for (int i = 1, u, v; i < n; i++) {
    		scanf("%d%d", &u, &v);
    		g.add_edge(u, v);
    //		cerr << u << " " << v << " " << (signed) g.E.size() - 1 << '\n';
    		g.add_edge(v, u);
    //		cerr << v << " " << u << " " << (signed) g.E.size() - 1 << '\n';
    		deg[u] += 2;
    		deg[v] += 2;
    	}
    	if (n == 1) {
    		printf("%d\n", 1);
    		return;
    	}
    	occ.reset();
    	vise.reset();
    	n2 = n << 1;
    	for (int i = 0; i <= (3 * n); i++)
    		uf[i] = i;
    	for (int i = 1; i <= n; i++) {
    		int p = pos[i];
    		vis.reset();
    		dfs(p, 0, (n2 + p) ^ 1);
    //		assert(vis.count());
    //		cerr << "# " << i << " " << p << '\n';
    		for (int j = 1; j <= n; j++) {
    			if (vis.test(j)) {
    				printf("%d ", j);
    				occ.set(j);
    				int x = j, e1 = n2 + j, e2;
    				while (x ^ p) {
    					deg[x] -= 2 - (e1 > n2);
    					e2 = fe[x];
    //					cerr << "Link " << e1 << " " << (e2 ^ 1) << '\n';
    					uf[find(e1)] = find(e2 ^ 1);
    					vise.set(e2);
    					swap(e1, e2);
    					x = fa[x];
    				}
    				deg[p]--;
    				uf[find(n2 + p)] = find(e1);
    //				cerr << "Link " << n2 + p << " " << (e1) << '\n';
    				break;
    			}
    		}
    	}
    	putchar('\n');
    }
    
    int main() {
    //	freopen("tree.in", "r", stdin);
    //	freopen("tree.out", "w", stdout);
    	scanf("%d", &T);
    	while (T--) {
    		solve();
    	}
    //	cerr << clock() << "ms";
    	return 0;
    }

    Day 2

      手速慢,脑速也慢,sad....

    Problem A

      枚举哪一种主食材料不合法,然后 dp 记一下选择它的数量和不选的差。

      时间复杂度 $O(mn^2)$。好像有点卡常。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    template <typename T>
    boolean chkmin(T& a, T b) {
    	return (a > b) ? (a = b, true) : false;
    }
    template <typename T>
    boolean chkmax(T& a, T b) {
    	return (a < b) ? (a = b, true) : false;
    }
    
    #define forv(_i, _vec) for (vector<int>::iterator (_i) = (_vec).begin(); (_i) != (_vec).end(); (_i)++)
    
    const int Mod = 998244353;
    
    #define ll long long
    
    void exgcd(int a, int b, int& x, int& y) {
    	if (!b) {
    		x = 1, y = 0;
    	} else {
    		exgcd(b, a % b, y, x);
    		y -= (a / b) * x;
    	}
    }
    
    int inv(int a) {
    	int x, y;
    	exgcd(a, Mod, x, y);
    	return (x < 0) ? (x + Mod) : (x);
    }
    
    typedef class Zi {
    	public:
    		int v;
    
    		Zi() : v(0) {	}
    		Zi(int v) : v(v) {	}
    		Zi(ll x) : v(x % Mod) {	}
    		
    		friend Zi operator + (Zi a, Zi b) {
    			return ((a.v += b.v) >= Mod) ? (a.v -= Mod) : (a);
    		}
    		friend Zi operator - (Zi a, Zi b) {
    			return ((a.v -= b.v) < 0) ? (a.v += Mod) : (a);
    		} 
    		friend Zi operator * (Zi a, Zi b) {
    			return 1ll * a.v * b.v;
    		} 
    		friend Zi operator ~ (Zi a) {
    			return inv(a.v);
    		}
    		Zi& operator += (Zi b) {
    			return *this = *this + b;
    		}
    		Zi& operator -= (Zi b) {
    			return *this = *this - b;
    		}
    		Zi& operator *= (Zi b) {
    			return *this = *this * b;
    		}
    } Zi;
    
    const ll Mod2 = 3ll * Mod * Mod;
    
    const int N = 105, M = 2005;
    
    int n, m;
    Zi sum[N];
    Zi a[N][M];
    ll f[N][250];
    
    void fix2(ll& x) {
    	(x >= Mod2) && (x -= Mod2);
    }
    
    int main() {
    	freopen("meal.in", "r", stdin);
    	freopen("meal.out", "w", stdout);
    	scanf("%d%d", &n, &m);
    	for (int i = 1; i <= n; i++) {
    		for (int j = 1; j <= m; j++) {
    			scanf("%d", &a[i][j].v);
    			sum[i] = sum[i] + a[i][j];
    		}
    	}
    	Zi ans = 1;
    	for (int i = 1; i <= n; i++)
    		ans *= (sum[i] + 1);
    	ans = ans - 1;
    //	cerr << "ans: " << ans.v << '\n';
    	const int V = 110;
    	for (int b = 1; b <= m; b++) {
    		memset(f, 0, sizeof(f));
    		f[0][V] = 1;
    		for (int i = 1; i <= n; i++) {
    			ll x = a[i][b].v, y = (sum[i] - a[i][b]).v;
    			ll *g = f[i - 1] + V, *h = f[i] + V;
    			for (int j = -i + 1; j < i; j++) {
    				ll v = g[j];
    				if (v) {
    					fix2(h[j + 1] += v * x);
    					fix2(h[j - 1] += v * y);
    					fix2(h[j] += v);
    				}
    			}
    			for (int j = -i; j <= i; j++) {
    				if (h[j]) {
    					h[j] %= Mod;
    				}
    			}
    		}
    		Zi tmp = 0;
    		for (int i = 1; i <= n; i++)
    			tmp += f[n][i + V];
    		ans -= tmp;
    	}
    	printf("%d\n", ans.v);
    //	cerr << 1.0 * clock() / CLOCKS_PER_SEC << '\n';
    	return 0;
    }

    Problem B

      只用考虑以每个前缀,最后一段长度最小的合法划分。

      我还不会证,但它看上去很对。

      设第 $i$ 个前缀最后一段的和为 $f_i$,设当前考虑的前缀为 $j$,问题相当于要找出满足 $f_i - S(i + 1, j) < 0$ 的最大的 $j$。 

      单调队列优化即可。

      高精度 rush 成功,读入 rush 失败。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    typedef class Input {
    	protected:
    		const static int limit = 65536;
    		FILE* file; 
    
    		int ss, st;
    		char buf[limit];
    	public:
    		
    		Input() : file(NULL)	{	};
    		Input(FILE* file) : file(file) {	}
    
    		void open(FILE *file) {
    			this->file = file;
    		}
    
    		void open(const char* filename) {
    			file = fopen(filename, "r");
    		}
    
    		char pick() {
    			if (ss == st)
    				st = fread(buf, 1, limit, file), ss = 0;//, cerr << "str: " << buf << "ed " << st << endl;
    			return (ss == st) ? (-1) : (buf[ss++]);
    		}
    } Input;
    
    #define digit(_x) ((_x) >= '0' && (_x) <= '9')
    
    Input& operator >> (Input& in, unsigned& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, unsigned long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, int& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, double& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	if (x == '.') {
    		double dec = 1;
    		for ( ; ~(x = in.pick()) && digit(x); u = u + (dec *= 0.1) * (x - '0'));
    	}
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, char* str) {
    	char x;
    	while (~(x = in.pick()) && x != '\n' && x != ' ')
    		*(str++) = x;
    	*str = 0;
    	return in;
    }
    
    Input in (stdin);
    
    typedef class Output {
    	protected:
    		const static int Limit = 65536;
    		char *tp, *ed;
    		char buf[Limit];
    		FILE* file;
    		int precision;
    
    		void flush() {
    			fwrite(buf, 1, tp - buf, file);
    			fflush(file);
    			tp = buf;
    		}
    
    	public:
    
    		Output() {	}
    		Output(FILE* file) : tp(buf), ed(buf + Limit), file(file), precision(6) {	}
    		Output(const char *str) : tp(buf), ed(buf + Limit), precision(6) {
    			file = fopen(str, "w");
    		}
    		~Output() {
    			flush();
    		}
    
    		void put(char x) {
    			if (tp == ed)
    				flush();
    			*(tp++) = x;
    		}
    
    		int get_precision() {
    			return precision;
    		}
    		void set_percision(int x) {
    			precision = x;
    		}
    } Output;
    
    Output& operator << (Output& out, int x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, long long x) {
    	static char buf[36];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, unsigned x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, char x)  {
    	out.put(x);
    	return out;
    }
    
    Output& operator << (Output& out, const char* str) {
    	for ( ; *str; out.put(*(str++)));
    	return out;
    }
    
    Output& operator << (Output& out, double x) {
    	int y = x;
    	x -= y;
    	out << y << '.';
    	for (int i = out.get_precision(); i; i--, y = x * 10, x = x * 10 - y, out.put(y + '0'));
    	return out;
    }
    
    Output out (stdout);
    
    #define ll long long
    
    const int Base = 1e9;
    
    typedef class BigInteger {
    	public:
    		vector<ll> a;
    
    		BigInteger() : BigInteger(0) {	}
    		BigInteger(ll x) {
    			if (!x) {
    				a.resize(1);
    				a[0] = 0;
    			} else {
    				while (x) {
    					a.push_back(x % Base);
    					x /= Base;
    				}
    			}
    		}
    
    		int length() const {
    			return a.size();
    		}
    		void resize(int newsize) {
    			a.resize(newsize, 0ll);
    		}
    		void shrink() {
    			while (length() > 1 && !a.back())
    				a.pop_back();
    		}
    		ll& operator [] (int p) {
    			return a[p];
    		}
    		ll at(int p) const {
    			return a[p];
    		}
    
    		friend BigInteger operator + (BigInteger a, BigInteger b) {
    			BigInteger rt;
    			int n = max(a.length(), b.length()) + 1;
    			rt.resize(n);
    			a.resize(n);
    			b.resize(n);
    			for (int i = 0; i < n - 1; i++) {
    				rt[i] += a[i] + b[i];
    				rt[i + 1] += rt[i] / Base;
    				rt[i] %= Base;
    			}
    			rt.shrink();
    			return rt;
    		}
    		friend BigInteger operator * (BigInteger a, BigInteger b) {
    			BigInteger rt;
    			int n = a.length() + b.length();
    			rt.resize(n);
    			for (int i = 0; i < a.length(); i++) {
    				for (int j = 0; j < b.length(); j++) {
    					rt[i + j] += a[i] * b[j];
    					rt[i + j + 1] += rt[i + j] / Base;
    					rt[i + j] %= Base;
    				}
    			}
    			rt.shrink();
    			return rt;
    		}
    
    		friend Output& operator << (Output& out, const BigInteger& x) {
    			static char buf[14];
    			out << x.a.back();
    			signed int n = x.length();
    			for (int i = n - 2; i >= 0; i--) {
    				char* top = buf + 12;
    				ll tmp = x.at(i);
    				*top = 0;
    				for (int j = 0; j < 9; j++) {
    					*(--top) = '0' + tmp % 10;
    					tmp /= 10;
    				}
    				out << top;
    			}
    			return out;
    		}
    } BigInteger;
    
    #define uint unsigned int
    
    int n;
    ll *s;
    int *a, *g, *Q;
    
    ll S(int l, int r) {
    	return (!l) ? (s[r]) : (s[r] - s[l - 1]);
    }
    
    int main() {
    	int op;
    	in >> n >> op;
    	a = new int[(n + 1)];
    
    	if (op == 0) {
    		for (int i = 1; i <= n; i++) {
    			in >> a[i];
    		}
    	} else {
    		uint x, y, z;
    		uint *b = new uint[(n + 1)];
    		int m;
    		in >> x >> y >> z >> b[1] >> b[2] >> m;
    		int *p = new int[(m + 1)];
    		int *l = new int[(n + 1)];
    		int *r = new int[(n + 1)];
    		for (int i = 1; i <= m; i++) {
    			in >> p[i] >> l[i] >> r[i];	
    		}
    		uint msk = (1u << 30) - 1;
    		for (int i = 3; i <= n; i++) {
    			b[i] = (x * b[i - 1] + y * b[i - 2] + z) & msk;
    		}
    		for (int i = 1, j = 1; i <= n; i++) {
    			if (i > p[j])
    				j++;
    			a[i] = b[i] % (r[j] - l[j] + 1) + l[j];
    		}
    		delete[] p;
    		delete[] l;
    		delete[] r;
    		delete[] b;
    	}
    	
    	g = new int[(n + 1)];
    	s = new ll[(n + 1)];
    	Q = new int[(n + 10)];
    	s[0] = 0;
    	for (int i = 1; i <= n; i++) {
    		s[i] = s[i - 1] + a[i];
    	}
    	int st = 1, ed = 1;
    	Q[1] = 0, g[0] = 0;
    	for (int i = 1; i <= n; i++) {
    		while (st < ed && S(g[Q[st + 1]], Q[st + 1]) <= S(Q[st + 1] + 1, i))
    			st++;
    		g[i] = Q[st] + 1;
    		while (st <= ed && S(g[Q[ed]], Q[ed]) - S(Q[ed] + 1, i) >= S(g[i], i))
    			ed--;
    		Q[++ed] = i;
    	}
    	BigInteger ans (0);
    	for (int i = n; i; i = g[i] - 1) {
    		ans = ans + BigInteger(S(g[i], i)) * S(g[i], i);
    	}
    	out << ans << '\n';
    	return 0;
    }

    Problem C

      先讲一下 $O(n\log n)$ 的垃圾做法:

      考虑计算每个点作为中心的答案。

      考虑以任意一个重心为根,重心的答案可以暴力计算,对于剩下的点必须删掉重心所在的子树中的一条边。

      讨论一下这条边是在这个点到根的路径,还是其他地方。然后设删掉的边较浅一端的大小为 $x$,之后就是一个傻逼二维数点问题。树状数组维护即可。

      有线性做法,我先咕着。

      下面是线性做法,虽然我的线性做法比较垃圾,不开 O2 常数被吊锤

      考虑树链剖分,设根所在的重链为 $L$,如果一个点 $p$ 不在 $L$ 上,那么如果 $p$ 要成为重心,那么删掉的边必须满足下面任意条件之一,设删掉的边中较低端点为 $x$

    • $x$ 是 $p$ 的祖先,并且 $x$ 和 $p$ 在同一条重链上。
    • 设 $y$ 是 $p$ 的祖先中第一个在 $L$ 的点,$x$ 是 $y$ 或者 $x$ 在 $y$ 的重子树内。

      对于 $L$ 上计算答案,注意到查询左端点或右端点是单调的,简单维护一下可以做到 $O(n)$。

      计算不在 $L$ 上的点的第一部分答案类似,不难做到和链长线性相关的复杂度。

      然后考虑计算第二部分的答案,考虑按 $L$ 上从深到浅扫描线,注意到查询总是在轻子树内,注意到查询涉及到最大的 $n - 2sz$ 中的 $sz$ 是最大轻子树的大小。考虑暴力预处理这一部分的后缀和,然后再计算轻子树内的点的答案。因为 $L$ 上每个点的轻子树不会相交,所以预处理总复杂度为 $O(n)$。

      所以总复杂度 $O(n)$。

      (第一份是带 log 的做法,第二份是线性)

    Code1

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    typedef class Input {
    	protected:
    		const static int limit = 65536;
    		FILE* file; 
    
    		int ss, st;
    		char buf[limit];
    	public:
    
    		Input() : file(NULL)	{	};
    		Input(FILE* file) : file(file) {	}
    
    		void open(FILE *file) {
    			this->file = file;
    		}
    
    		void open(const char* filename) {
    			file = fopen(filename, "r");
    		}
    
    		char pick() {
    			if (ss == st)
    				st = fread(buf, 1, limit, file), ss = 0;//, cerr << "str: " << buf << "ed " << st << endl;
    			return (ss == st) ? (-1) : (buf[ss++]);
    		}
    } Input;
    
    #define digit(_x) ((_x) >= '0' && (_x) <= '9')
    
    Input& operator >> (Input& in, unsigned& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, unsigned long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, int& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, double& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	if (x == '.') {
    		double dec = 1;
    		for ( ; ~(x = in.pick()) && digit(x); u = u + (dec *= 0.1) * (x - '0'));
    	}
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, char* str) {
    	char x;
    	while (~(x = in.pick()) && x != '\n' && x != ' ')
    		*(str++) = x;
    	*str = 0;
    	return in;
    }
    
    Input in (stdin);
    
    typedef class Output {
    	protected:
    		const static int Limit = 65536;
    		char *tp, *ed;
    		char buf[Limit];
    		FILE* file;
    		int precision;
    
    		void flush() {
    			fwrite(buf, 1, tp - buf, file);
    			fflush(file);
    			tp = buf;
    		}
    
    	public:
    
    		Output() {	}
    		Output(FILE* file) : tp(buf), ed(buf + Limit), file(file), precision(6) {	}
    		Output(const char *str) : tp(buf), ed(buf + Limit), precision(6) {
    			file = fopen(str, "w");
    		}
    		~Output() {
    			flush();
    		}
    
    		void put(char x) {
    			if (tp == ed)
    				flush();
    			*(tp++) = x;
    		}
    
    		int get_precision() {
    			return precision;
    		}
    		void set_percision(int x) {
    			precision = x;
    		}
    } Output;
    
    Output& operator << (Output& out, int x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, long long x) {
    	static char buf[36];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, unsigned x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, char x)  {
    	out.put(x);
    	return out;
    }
    
    Output& operator << (Output& out, const char* str) {
    	for ( ; *str; out.put(*(str++)));
    	return out;
    }
    
    Output& operator << (Output& out, double x) {
    	int y = x;
    	x -= y;
    	out << y << '.';
    	for (int i = out.get_precision(); i; i--, y = x * 10, x = x * 10 - y, out.put(y + '0'));
    	return out;
    }
    
    Output out (stdout);
    
    const int N = 3e5 + 5;
    
    typedef class Fenwick {
    	public:
    		int n;
    		int a[N];
    
    		void init(int n) {
    			this->n = n;
    			memset(a, 0, sizeof(int) * (n + 1));
    		}
    		void add(int idx, int val) {
    			for ( ; idx <= n; idx += (idx & (-idx)))
    				a[idx] += val;
    		}
    		int query(int idx) {
    			int rt = 0;
    			for ( ; idx; idx -= (idx & (-idx)))
    				rt += a[idx];
    			return rt;
    		}
    		int query(int l, int r) {
    			if (l > r)
    				return 0;
    			return query(r) - query(l - 1);
    		}
    } Fenwick;
    
    #define forv(_i, _v) for (vector<int>::iterator _i = (_v).begin(); (_i) != (_v).end(); (_i)++)
    
    #define ll long long
    
    int T, n, g;
    int sz[N];
    Fenwick fen;
    vector<int> G[N];
    
    int get_sz(int p, int fa) {
    	sz[p] = 1;
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			get_sz(*e, p);
    			sz[p] += sz[*e];
    		}
    	}
    	return sz[p];
    }
    int get_centroid(int p, int fa) {
    	forv (e, G[p]) {
    		if ((*e ^ fa) && sz[*e] > (n >> 1)) {
    			return get_centroid(*e, p);
    		}
    	}
    	return p;
    }
    
    int cnt[N], mxsz[N];
    void dfs1(int p, int fa) {
    	mxsz[p] = 0;
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			mxsz[p] = max(mxsz[p], sz[*e]);
    		}
    	}
    	int L = max(1, 2 * (n - sz[p]) - n);
    	int R = n - 2 * mxsz[p];
    	cnt[p] += fen.query(L, R);
    	fen.add(sz[p], -1);
    	L = max(2 * mxsz[p], 1);
    	R = min(2 * sz[p], n - 1);
    	cnt[p] -= fen.query(L, R);
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			dfs1(*e, p);
    		}
    	}
    	fen.add(sz[p], 1);
    }
    
    void dfs2(int p, int fa) {
    	int L = max(1, 2 * (n - sz[p]) - n);
    	int R = n - 2 * mxsz[p];
    	cnt[p] += fen.query(L, R);
    	fen.add(sz[p], 1);
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			dfs2(*e, p);
    		}
    	}
    	cnt[p] -= fen.query(L, R);
    }
    
    void calc(int p, int fa, int szcur, int szmx) {
    	int lim = ((n - sz[p]) >> 1);
    	cnt[g] += (szcur - sz[p] <= lim && szmx <= lim);
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			calc(*e, p, szcur, szmx);
    		}
    	}
    }
    
    int tmp[N];
    void solve() {
    	in >> n;
    	for (int i = 1; i <= n; i++)
    		G[i].clear();
    	for (int i = 1, u, v; i < n; i++) {
    		in >> u >> v;
    		G[u].push_back(v);
    		G[v].push_back(u);
    	}
    	get_sz(1, 0);
    	g = get_centroid(1, 0);
    	get_sz(g, 0);
    	memset(cnt, 0, sizeof(int) * (n + 1));
    
    	//	cerr << "centroid: " << g << '\n';
    
    	// part1
    	fen.init(n);
    	//	for (int i = 1; i <= n; i++)
    	//		fen.add(sz[i], 1);
    	dfs1(g, 0);
    	memset(tmp, 0, sizeof(int) * (n + 1));
    	for (int i = 1; i <= n; i++)
    		tmp[sz[i]]++;
    	for (int i = 1; i <= n; i++)
    		tmp[i] += tmp[i - 1];
    	for (int p = 1; p <= n; p++) {
    		int L = max(1, 2 * (n - sz[p]) - n);
    		int R = n - 2 * mxsz[p];
    		if (L <= R) {
    			cnt[p] += tmp[R] - tmp[L - 1];
    		}
    	}
    
    	// part2
    	fen.init(n);
    	dfs2(g, 0);
    	//	for (int i = 1; i <= n; i++) {
    	//		cerr << cnt[i] << " ";
    	//	}
    	//	cerr << '\n';
    
    	// part4
    	cnt[g] = 0;
    	int mx = 0, id = -1, sc = 0;
    	forv (p, G[g]) {
    		if (sz[*p] > mx) {
    			swap(mx, sc);
    			mx = sz[*p];
    			id = *p;
    		} else if (sz[*p] > sc) {
    			sc = sz[*p];
    		}
    	}
    	forv (p, G[g]) {
    		if (*p == id) {
    			calc(*p, g, mx, sc);
    		} else {
    			calc(*p, g, sz[*p], mx);
    		}
    	}
    
    	ll ans = 0;
    	for (int i = 1; i <= n; i++) {
    		ans += 1ll * i * cnt[i];
    		//		cerr << cnt[i] << " ";
    	}
    	//	cerr << '\n';
    	out << ans << '\n';
    }
    
    int main() {
    	in >> T;
    	while (T--) {
    		solve();
    	}
    	return 0;
    }

    Code2

    #include <bits/stdc++.h>
    using namespace std;
    typedef bool boolean;
    
    typedef class Input {
    	protected:
    		const static int limit = 65536;
    		FILE* file; 
    
    		int ss, st;
    		char buf[limit];
    	public:
    
    		Input() : file(NULL)	{	};
    		Input(FILE* file) : file(file) {	}
    
    		void open(FILE *file) {
    			this->file = file;
    		}
    
    		void open(const char* filename) {
    			file = fopen(filename, "r");
    		}
    
    		char pick() {
    			if (ss == st)
    				st = fread(buf, 1, limit, file), ss = 0;//, cerr << "str: " << buf << "ed " << st << endl;
    			return (ss == st) ? (-1) : (buf[ss++]);
    		}
    } Input;
    
    #define digit(_x) ((_x) >= '0' && (_x) <= '9')
    
    Input& operator >> (Input& in, unsigned& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, unsigned long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	return in;
    }
    
    Input& operator >> (Input& in, int& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, long long& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, double& u) {
    	char x;
    	while (~(x = in.pick()) && !digit(x) && x != '-');
    	int aflag = ((x == '-') ? (x = in.pick(), -1) : (1));
    	for (u = x - '0'; ~(x = in.pick()) && digit(x); u = u * 10 + x - '0');
    	if (x == '.') {
    		double dec = 1;
    		for ( ; ~(x = in.pick()) && digit(x); u = u + (dec *= 0.1) * (x - '0'));
    	}
    	u *= aflag;
    	return in;
    }
    
    Input& operator >> (Input& in, char* str) {
    	char x;
    	while (~(x = in.pick()) && x != '\n' && x != ' ')
    		*(str++) = x;
    	*str = 0;
    	return in;
    }
    
    Input in (stdin);
    
    typedef class Output {
    	protected:
    		const static int Limit = 65536;
    		char *tp, *ed;
    		char buf[Limit];
    		FILE* file;
    		int precision;
    
    		void flush() {
    			fwrite(buf, 1, tp - buf, file);
    			fflush(file);
    			tp = buf;
    		}
    
    	public:
    
    		Output() {	}
    		Output(FILE* file) : tp(buf), ed(buf + Limit), file(file), precision(6) {	}
    		Output(const char *str) : tp(buf), ed(buf + Limit), precision(6) {
    			file = fopen(str, "w");
    		}
    		~Output() {
    			flush();
    		}
    
    		void put(char x) {
    			if (tp == ed)
    				flush();
    			*(tp++) = x;
    		}
    
    		int get_precision() {
    			return precision;
    		}
    		void set_percision(int x) {
    			precision = x;
    		}
    } Output;
    
    Output& operator << (Output& out, int x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, long long x) {
    	static char buf[36];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		if (x < 0)
    			out.put('-'), x = -x;
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, unsigned x) {
    	static char buf[35];
    	static char * const lim = buf + 34;
    	if (!x)
    		out.put('0');
    	else {
    		char *tp = lim;
    		for ( ; x; *(--tp) = x % 10, x /= 10);
    		for ( ; tp != lim; out.put(*(tp++) + '0'));
    	}
    	return out;
    }
    
    Output& operator << (Output& out, char x)  {
    	out.put(x);
    	return out;
    }
    
    Output& operator << (Output& out, const char* str) {
    	for ( ; *str; out.put(*(str++)));
    	return out;
    }
    
    Output& operator << (Output& out, double x) {
    	int y = x;
    	x -= y;
    	out << y << '.';
    	for (int i = out.get_precision(); i; i--, y = x * 10, x = x * 10 - y, out.put(y + '0'));
    	return out;
    }
    
    Output out (stdout);
    
    const int N = 3e5 + 5;
    
    typedef class Event {
    	public:
    		int p, x, v;
    
    		Event() {	}
    		Event(int p, int x, int v) : p(p), x(x), v(v) {	}
    } Event;
    
    #define forv(_i, _v) for (vector<int>::iterator _i = (_v).begin(); (_i) != (_v).end(); (_i)++)
    
    #define ll long long
    
    int T, n, g;
    int sz[N];
    int cnt[N];
    vector<int> G[N];
    
    int get_sz(int p, int fa) {
    	sz[p] = 1;
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			get_sz(*e, p);
    			sz[p] += sz[*e];
    		}
    	}
    	return sz[p];
    }
    int get_centroid(int p, int fa) {
    	forv (e, G[p]) {
    		if ((*e ^ fa) && sz[*e] > (n >> 1)) {
    			return get_centroid(*e, p);
    		}
    	}
    	return p;
    }
    
    int zson[N];
    void dfs1(int p, int fa) {
    	int mx = -1, &id = zson[p];
    	id = 0;
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			dfs1(*e, p);
    			if (sz[*e] > mx) {
    				mx = sz[*e];
    				id = *e;
    			}
    		}
    	}
    }
    
    int tp;
    int stk[N];
    void work() {
    	reverse(stk + 1, stk + tp + 1);
    	stk[tp + 1] = 0;
    	for (int *p = stk + 1, *q = stk + 1, *_p = stk + tp + 1; p != _p; p++) {
    		while (sz[*q] > (sz[*p] << 1))
    			q++;
    		cnt[*p] += p - q;
    	}
    	for (int *p = stk + 1, *q = stk + 1, *_p = stk + tp + 1; p != _p; p++) {
    		int sc = sz[zson[*p]];
    		while (q != _p && sz[*q] >= (sc << 1))
    			q++;
    		cnt[*p] -= p - q;
    	}
    }
    
    void dfs2(int p, int fa) {
    	if (zson[p]) {
    		forv (e, G[p]) {
    			if ((*e ^ fa) && (*e ^ zson[p])) {
    				dfs2(*e, p);
    				work();
    			}
    		}
    		dfs2(zson[p], p);
    	} else {
    		tp = 0;
    	}
    	stk[++tp] = p;
    }
    
    void calc(int p, int fa, int szcur, int szmx) {
    	int lim = ((n - sz[p]) >> 1);
    	cnt[g] += (szcur - sz[p] <= lim && szmx <= lim);
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			calc(*e, p, szcur, szmx);
    		}
    	}
    }
    
    int tmp[N];
    void dfs3(int p, int fa, int R, int& sum) {
    	tmp[sz[p]]++;
    	if (sz[p] <= R)
    		sum++;
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			dfs3(*e, p, R, sum);
    		}
    	}
    }
    
    vector<int> P;
    void dfs4(int p, int fa) {
    	P.push_back(p);
    	forv (e, G[p]) {
    		if (*e ^ fa) {
    			dfs4(*e, p);
    		}
    	}
    }
    
    void solve() {
    	in >> n;
    	for (int i = 1; i <= n; i++)
    		G[i].clear();
    	for (int i = 1, u, v; i < n; i++) {
    		in >> u >> v;
    		G[u].push_back(v);
    		G[v].push_back(u);
    	}
    	get_sz(1, 0);
    	g = get_centroid(1, 0);
    	get_sz(g, 0);
    	memset(cnt, 0, sizeof(int) * (n + 1));
    
    //	cerr << "g: " << g << '\n';
    
    	dfs1(g, 0);
    //	cerr << "zson: ";
    //	for (int i = 1; i <= n; i++) {
    //		cerr << zson[i] << " ";
    //	}
    //	cerr << '\n';
    	dfs2(g, 0);
    	work();
    
    	memset(tmp, 0, sizeof(int) * (n + 1));
    	int R = 0, sum = 0;
    	for (int *p = stk + 1, *_p = stk + tp + 1; p != _p; p++) {
    		int q = n - (sz[zson[*p]] << 1);
    		while (R < q)
    			sum += tmp[++R];
    		cnt[*p] += sum;
    		forv (e, G[*p]) {
    			if (sz[*e] < sz[*p] && (*e ^ zson[*p])) {
    				dfs3(*e, *p, R, sum);
    			}
    		}
    	}
    	memset(tmp, 0, sizeof(int) * (n + 1));
    	R = 0, sum = 0;
    	for (int *p = stk + 1, *_p = stk + tp + 1; p != _p; p++) {
    		int q = n - (sz[*p] << 1) - 1;
    		while (R < q)
    			sum += tmp[++R];
    		cnt[*p] -= sum;
    		forv (e, G[*p]) {
    			if (sz[*e] < sz[*p] && (*e ^ zson[*p])) {
    				dfs3(*e, *p, R, sum);
    			}
    		}
    	}
    	
    	reverse(stk + 1, stk + tp + 1);
    	memset(tmp, 0, sizeof(int) * (n + 1));
    	for (int *p = stk + 1, *_p = stk + tp + 1; p != _p; p++) {
    		int sc = 0;
    		P.clear();
    		forv (e, G[*p]) {
    			if (sz[*e] < sz[*p] && (*e ^ zson[*p])) {
    				sc = max(sz[*e], sc);
    				dfs4(*e, *p);
    			}
    		}
    		sc = min(sc << 1 | 1, n);
    		for (int j = n, t = sc; t; j--, t--) {
    			tmp[j] += tmp[j + 1];
    		}
    		forv (e, P) {
    			int l = max(n - (sz[*e] << 1), 1);
    			int r = min(n - (sz[zson[*e]] << 1), n - 1);
    			cnt[*e] += tmp[l] - tmp[r + 1];
    		}
    		for (int j = n - sc + 1; j <= n; j++) {
    			tmp[j] -= tmp[j + 1];
    		}
    		tmp[sz[*p]]++;
    		forv (e, P) {
    			tmp[sz[*e]]++;
    		}
    	}
    
    	// get the answer for the centroid
    	cnt[g] = 0;
    	int mx = 0, id = -1, sc = 0;
    	forv (p, G[g]) {
    		if (sz[*p] > mx) {
    			swap(mx, sc);
    			mx = sz[*p];
    			id = *p;
    		} else if (sz[*p] > sc) {
    			sc = sz[*p];
    		}
    	}
    	forv (p, G[g]) {
    		if (*p == id) {
    			calc(*p, g, mx, sc);
    		} else {
    			calc(*p, g, sz[*p], mx);
    		}
    	}
    
    	ll ans = 0;
    	for (int i = 1; i <= n; i++) {
    		ans += 1ll * i * cnt[i];
    //		cerr << cnt[i] << " ";
    	}
    //	cerr << '\n';
    	out << ans << '\n';
    }
    
    int main() {
    	freopen("centroid.in", "r", stdin);
    	freopen("centroid.out", "w", stdout);
    	in >> T;
    	while (T--) {
    		solve();
    	}
    	return 0;
    }

    posted @ 2019-11-18 20:54  阿波罗2003  阅读(638)  评论(0编辑  收藏  举报