luogu 3790 文艺数学题 - 矩阵树定理 - 容斥原理
可以考虑计算边权的最大公约数为$i$的生成树的个数$f(i)$,最后累加答案。
然后考虑这样的生成树的个数怎么求,根据某个经典套路,我们可以容斥。
因为可以求出边权的最大公约数为$i$的倍数的生成树的个数$F(i)$,所以减去它的倍数的$f$就是$f(i)$了。
但是这么做会T掉。
可以用$O(W\log W)$的时间内预处理出为边权$i$的倍数的边数有多少条。然后高消前判断一下边数是否大于等于$n - 1$。
复杂度的话考虑超过 $\sqrt{W}$ 的边数至多有 $O(m)$ 条,因此复杂度为 $O((\sqrt{W}+\frac{m}{n - 1})n^3)$
Code
1 /** 2 * luogu 3 * Problem#3790 4 * Accepted 5 * Time: 6016ms 6 * Memory: 9402k 7 */ 8 #include <iostream> 9 #include <cstring> 10 #include <cstdio> 11 using namespace std; 12 typedef bool boolean; 13 #define ll long long 14 15 const int N = 65, M = 1e9 + 7; 16 17 void exgcd(int a, int b, int& d, int& x, int& y) { 18 if(!b) 19 d = a, x = 1, y = 0; 20 else { 21 exgcd(b, a % b, d, y, x); 22 y -= (a / b) * x; 23 } 24 } 25 26 int inv(int a, int n) { 27 int d, x, y; 28 exgcd(a, n, d, x, y); 29 return (x < 0) ? (x + n) : (x); 30 } 31 32 typedef class Matrix { 33 public: 34 int a[N][N]; 35 36 void reset() { 37 memset(a, 0, sizeof(a)); 38 } 39 40 int det(int n) { 41 int pro = 1; 42 for (int i = 1, e; i <= n; i++) { 43 e = 0; 44 for (int j = i; j <= n && !e; j++) 45 if (a[j][i]) 46 e = j; 47 if (e == 0) return 0; 48 if (e != i) 49 for (int j = 1; j <= n; j++) 50 swap(a[e][j], a[i][j]); 51 for (int j = 1, x, y; j <= n; j++) { 52 if (j == i) continue; 53 x = a[i][i], y = a[j][i], pro = pro * 1ll * x % M; 54 for (int k = 1; k <= n; k++) { 55 a[j][k] = (a[j][k] * 1ll * x - a[i][k] * 1ll * y) % M; 56 if (a[j][k] < 0) a[j][k] += M; 57 } 58 59 } 60 } 61 int rt = inv(pro, M); 62 for (int i = 1; i <= n; i++) 63 rt = rt * 1ll * a[i][i] % M; 64 return rt; 65 } 66 }Matrix; 67 68 typedef class Edge { 69 public: 70 int u, v, w; 71 }Edge; 72 73 const int Val = 1e6 + 1; 74 75 int n, m; 76 Edge* es; 77 Matrix a; 78 int ce[Val], f[Val]; 79 80 inline void init() { 81 scanf("%d%d", &n, &m); 82 es = new Edge[(m + 1)]; 83 for (int i = 1; i <= m; i++) 84 scanf("%d%d%d", &es[i].u, &es[i].v, &es[i].w), ce[es[i].w]++; 85 } 86 87 int calc(int g) { 88 if (ce[g] < n - 1) return 0; 89 a.reset(); 90 for (int i = 1, u, v; i <= m; i++) 91 if (!(es[i].w % g)) { 92 u = es[i].u - 1, v = es[i].v - 1; 93 a.a[u][u]++, a.a[v][v]++; 94 a.a[u][v]--, a.a[v][u]--; 95 if (a.a[u][v] < 0) a.a[u][v] += M; 96 if (a.a[v][u] < 0) a.a[v][u] += M; 97 } 98 int rt = a.det(n - 1); 99 // cerr << rt << endl; 100 return rt; 101 } 102 103 int res = 0; 104 inline void solve() { 105 for (int i = 1; i < Val; i++) 106 for (int j = (i << 1); j < Val; j += i) 107 ce[i] += ce[j]; 108 for (int i = Val - 1; i; i--) { 109 f[i] = calc(i); 110 for (int j = (i << 1); j < Val; j += i) { 111 f[i] -= f[j]; 112 if (f[i] < 0) 113 f[i] += M; 114 } 115 res = (res + f[i] * 1ll * i) % M; 116 } 117 printf("%d", res); 118 } 119 120 int main() { 121 init(); 122 solve(); 123 return 0; 124 }