poj 3207 Ikki's Story IV - Panda's Trick - 2-sat

liympanda, one of Ikki’s friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki.

liympanda has a magic circle and he puts it on a plane, there are n points on its boundary in circular border: 0, 1, 2, …, n − 1. Evil panda claims that he is connecting m pairs of points. To connect two points, liympanda either places the link entirely inside the circle or entirely outside the circle. Now liympanda tells Ikki no two links touch inside/outside the circle, except on the boundary. He wants Ikki to figure out whether this is possible…

Despaired at the minesweeping game just played, Ikki is totally at a loss, so he decides to write a program to help him.

Input

The input contains exactly one test case.

In the test case there will be a line consisting of of two integers: n and m (n ≤ 1,000, m ≤ 500). The following m lines each contain two integers ai and bi, which denote the endpoints of the ith wire. Every point will have at most one link.

Output

Output a line, either “panda is telling the truth...” or “the evil panda is lying again”.

Sample Input

4 2
0 1
3 2

Sample Output

panda is telling the truth...

  题目大意 圆上有n个点,从左至右依次编号为0, 1, 2, ..., n - 1。给出m对点的编号,连接这m对点(连线只能全在圆外或者圆内),问是否可以使得这m条连线不相交。

  首先看一下可能会相交的情况:

  即存在两对点l1和r1,l2和r2,且满足

  我们将每条连线拆成2个点,(2 * i - 1)和2 * i,表示在圆内还是在圆外。于是这道题就转化成了2-sat问题。Tarjan完了缩点,再判断是否存在每条连线对应的两个点在同一强连通分量内,如果有,则无解,否则有解。

Code

  1 /**
  2  * poj
  3  * Problem#3207
  4  * Accepted
  5  * Time:32ms
  6  * Memory:8604k
  7  */
  8 #include <iostream>
  9 #include <cstdio>
 10 #include <ctime>
 11 #include <cmath>
 12 #include <cctype>
 13 #include <cstring>
 14 #include <cstdlib>
 15 #include <fstream>
 16 #include <sstream>
 17 #include <algorithm>
 18 #include <map>
 19 #include <set>
 20 #include <stack>
 21 #include <queue>
 22 #include <vector>
 23 #include <stack>
 24 #ifndef WIN32
 25 #define Auto "%lld"
 26 #else
 27 #define Auto "%I64d"
 28 #endif
 29 using namespace std;
 30 typedef bool boolean;
 31 const signed int inf = (signed)((1u << 31) - 1);
 32 const double eps = 1e-6;
 33 const int binary_limit = 128;
 34 #define smin(a, b) a = min(a, b)
 35 #define smax(a, b) a = max(a, b)
 36 #define max3(a, b, c) max(a, max(b, c))
 37 #define min3(a, b, c) min(a, min(b, c))
 38 template<typename T>
 39 inline boolean readInteger(T& u){
 40     char x;
 41     int aFlag = 1;
 42     while(!isdigit((x = getchar())) && x != '-' && x != -1);
 43     if(x == -1) {
 44         ungetc(x, stdin);    
 45         return false;
 46     }
 47     if(x == '-'){
 48         x = getchar();
 49         aFlag = -1;
 50     }
 51     for(u = x - '0'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - '0');
 52     ungetc(x, stdin);
 53     u *= aFlag;
 54     return true;
 55 }
 56 
 57 ///map template starts
 58 typedef class Edge{
 59     public:
 60         int end;
 61         int next;
 62         Edge(const int end = 0, const int next = 0):end(end), next(next){}
 63 }Edge;
 64 
 65 typedef class MapManager{
 66     public:
 67         int ce;
 68         int *h;
 69         Edge *edge;
 70         MapManager(){}
 71         MapManager(int points, int limit):ce(0){
 72             h = new int[(const int)(points + 1)];
 73             edge = new Edge[(const int)(limit + 1)];
 74             memset(h, 0, sizeof(int) * (points + 1));
 75         }
 76         inline void addEdge(int from, int end){
 77             edge[++ce] = Edge(end, h[from]);
 78             h[from] = ce;
 79         }
 80         inline void addDoubleEdge(int from, int end){
 81             addEdge(from, end);
 82             addEdge(end, from);
 83         }
 84         Edge& operator [] (int pos) {
 85             return edge[pos];
 86         }
 87 }MapManager;
 88 #define m_begin(g, i) (g).h[(i)]
 89 ///map template ends
 90 
 91 int n, m;
 92 MapManager g;
 93 int *ls, *rs;
 94 
 95 inline void init() {
 96     readInteger(n);
 97     readInteger(m);
 98     ls = new int[(m + 1)];
 99     rs = new int[(m + 1)];
100     for(int i = 1; i <= m; i++) {
101         readInteger(ls[i]);
102         readInteger(rs[i]);
103         if(ls[i] > rs[i])
104             swap(ls[i], rs[i]);
105     }
106 }
107 
108 inline void init_map() {
109     g = MapManager(2 * m + 3, 2 * n * m);
110     for(int i = 1; i < m; i++) {
111         for(int j = i + 1; j <= m; j++) {
112             if(ls[i] <= ls[j] && rs[i] >= ls[j] && rs[i] <= rs[j]) {
113                 g.addDoubleEdge(2 * i - 1, 2 * j);
114                 g.addDoubleEdge(2 * j - 1, 2 * i);
115             }
116         }
117     }
118 }
119 
120 int cnt = 0;
121 int* visitID;
122 int* exitID;
123 boolean* visited;
124 boolean* instack;
125 stack<int> s;
126 int* belong;
127 inline void init_tarjan() {
128     int an = 2 * m + 3;
129     visitID = new int[(an)];
130     exitID = new int[(an)];
131     visited = new boolean[(an)];
132     instack = new boolean[(an)];
133     belong = new int[(an)];
134     memset(visited, false, sizeof(boolean) * an);
135     memset(instack, false, sizeof(boolean) * an);
136 }
137 
138 void tarjan(int node) {
139     visitID[node] = exitID[node] = cnt++;
140     visited[node] = instack[node] = true;
141     s.push(node);
142     
143     for(int i = m_begin(g, node); i; i = g[i].next) {
144         int& e = g[i].end;
145         if(!visited[e]) {
146             tarjan(e);
147             smin(exitID[node], exitID[e]);
148         } else if(instack[e]) {
149             smin(exitID[node], visitID[e]);
150         }
151     }
152     
153     if(visitID[node] == exitID[node]) {
154         int now = -1;
155         while(now != node) {
156             now = s.top();
157             s.pop();
158             instack[now] = false;
159             belong[now] = node;
160         }
161     }
162 }
163 
164 inline void solve() {
165     for(int i = 1; i < (m << 1); i += 2)
166         if(belong[i] == belong[i + 1]) {
167             puts("the evil panda is lying again");
168             return;
169         }
170     puts("panda is telling the truth...");
171 }
172 
173 int main() {
174     init();
175     init_map();
176     init_tarjan();
177     for(int i = 1; i <= 2 * m; i++)
178         if(!visited[i])
179             tarjan(i);
180     solve();
181     return 0;
182 }
posted @ 2017-07-11 09:49  阿波罗2003  阅读(159)  评论(0编辑  收藏  举报