UVa 1471 Defense Lines - 线段树 - 离散化


  题意是说给一个序列,删掉其中一段连续的子序列(貌似可以为空),使得新的序列中最长的连续递增子序列最长。

  网上似乎最多的做法是二分查找优化,然而不会,只会值域线段树和离散化。。。

  先预处理出所有的点所能延伸到最左端的长度,和到最右端的长度,然后离散化,然后对于当前的点,就交给值域线段树去查出前面最大的符合条件的向左延伸的长度,加上当前位置最大向右延伸的长度,更新答案即可。

Code

  1 /**
  2  * UVa
  3  * Problem#1471
  4  * Accepted
  5  * Time:1190ms
  6  */
  7 #include<iostream>
  8 #include<cstdio>
  9 #include<cctype>
 10 #include<ctime>
 11 #include<cstring>
 12 #include<cstdlib>
 13 #include<fstream>
 14 #include<sstream>
 15 #include<algorithm>
 16 #include<map>
 17 #include<set>
 18 #include<stack>
 19 #include<queue>
 20 #include<vector>
 21 #include<stack>
 22 using namespace std;
 23 typedef bool boolean;
 24 #define inf 0xfffffff
 25 #define smin(a, b) a = min(a, b)
 26 #define smax(a, b) a = max(a, b)
 27 template<typename T>
 28 inline void readInteger(T& u){
 29     char x;
 30     int aFlag = 1;
 31     while(!isdigit((x = getchar())) && x != '-');
 32     if(x == '-'){
 33         x = getchar();
 34         aFlag = -1;
 35     }
 36     for(u = x - '0'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - '0');
 37     ungetc(x, stdin);
 38     u *= aFlag;
 39 }
 40 
 41 typedef class SegTreeNode {
 42     public:
 43         int val;
 44         SegTreeNode *l, *r;
 45         SegTreeNode(int val = 0, SegTreeNode* l = NULL, SegTreeNode* r = NULL):val(val), l(l), r(r) {        }
 46 
 47         inline void pushUp() {
 48             val = max(l->val, r->val);
 49         }
 50 }SegTreeNode;
 51 
 52 typedef class SegTree {
 53     public:
 54         SegTreeNode* root;
 55         SegTree():root(NULL) {        }
 56         SegTree(int s) {
 57             build(root, 1, s);
 58         }
 59         
 60         void build(SegTreeNode*& node, int l, int r) {
 61             node = new SegTreeNode();
 62             if(l == r)    return;
 63             int mid = (l + r) >> 1;
 64             build(node->l, l, mid);
 65             build(node->r, mid + 1, r);
 66         }
 67         
 68         void update(SegTreeNode*& node, int l, int r, int idx, int val) {
 69             if(l == idx && r == idx) {
 70                 smax(node->val, val);
 71                 return;
 72             }
 73             int mid = (l + r) >> 1;
 74             if(idx <= mid)    update(node->l, l, mid, idx, val);
 75             else    update(node->r, mid + 1, r, idx, val);
 76             node->pushUp();
 77         }
 78         
 79         int query(SegTreeNode*& node, int l, int r, int ql, int qr) {
 80             if(qr < ql)    return -inf;
 81             if(l == ql && r == qr) {
 82                 return node->val;
 83             }
 84             int mid = (l + r) >> 1;
 85             if(qr <= mid)    return query(node->l, l, mid, ql, qr);
 86             if(ql > mid)    return query(node->r, mid - 1, r, ql, qr);
 87             int sl = query(node->l, l, mid, ql, mid);
 88             int sr = query(node->r, mid + 1, r, mid + 1, qr);
 89             return max(sl, sr);
 90         }
 91         
 92         inline void clear(SegTreeNode*& node) {
 93             if(node == NULL)    return;
 94             clear(node->l);
 95             clear(node->r);
 96             delete[] node;
 97         }
 98 }SegTree;
 99 
100 int T;
101 int n;
102 int len;
103 int* lis;
104 int* buf;
105 SegTree st;
106 
107 inline void init() {
108     readInteger(n);
109     lis = new int[(const int)(n + 1)];
110     buf = new int[(const int)(n + 1)];
111     for(int i = 1; i <= n; i++)
112         readInteger(lis[i]);
113 }
114 
115 inline void descreate(int* a) {
116     memcpy(buf, a, sizeof(int) * (n + 1));
117     sort(buf + 1, buf + n + 1);
118     len = unique(buf + 1, buf + n + 1) - buf;
119     for(int i = 1; i <= n; i++)
120         a[i] = lower_bound(buf + 1, buf + len, a[i]) - buf;
121 }
122 
123 int *tol, *tor;
124 inline void dp() {
125     tol = new int[(const int)(n + 1)];
126     tor = new int[(const int)(n + 1)];
127     tol[1] = 1;
128     for(int i = 2; i <= n; i++)
129         tol[i] = (lis[i] > lis[i - 1]) ? (tol[i - 1] + 1) : (1);
130     tor[n] = 1;
131     for(int i = n - 1; i > 0; i--)
132         tor[i] = (lis[i] < lis[i + 1]) ? (tor[i + 1] + 1) : (1);
133 }
134 
135 int result;
136 inline void solve() {
137     result = 1;
138     descreate(lis);
139     st = SegTree(len);
140     dp();
141 //    st.update(st.root, 1, len, lis[1], tol[1]);
142     for(int i = 1; i <= n; i++) {
143         int c = st.query(st.root, 1, len, 1, lis[i] - 1);
144         smax(result, c + tor[i]);
145         st.update(st.root, 1, len, lis[i], tol[i]);
146     }
147     printf("%d\n", result);
148     delete[] tol;
149     delete[] tor;
150     delete[] buf;
151     delete[] lis;
152     st.clear(st.root);
153 }
154 
155 int main() {
156     readInteger(T);
157     while(T--) {
158         init();
159         solve();
160     }
161     return 0;
162 }

 

posted @ 2017-04-03 12:12  阿波罗2003  阅读(428)  评论(0编辑  收藏  举报