2024/2/24

要开学了

ABC341


A - Print 341

题意:

输出n个10最后输出1

#include <bits/stdc++.h>
using namespace std;

#define int long long

void solve() {
	int n;
	cin >> n;

	for (int i = 0; i < n; i++) {
		cout << "10";
	}
	cout << 1 << endl;
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int T = 1;
	// cin >> T;
	while(T--) {
		solve();
	}

	return 0;
}

B - Foreign Exchange

思路:

模拟交换

#include <bits/stdc++.h>
using namespace std;

#define int long long

void solve() {
	int n;
	cin >> n;

	vector<int> v(n + 1);
	for (int i = 1; i <= n; i++) {
		cin >> v[i];
	}

	for (int i = 0; i < n - 1; i++) {
		int a, b;
		cin >> a >> b;
		int t = v[i + 1] / a;
		v[i + 2] += t * b;
	}

	cout << v[n] << endl;
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int T = 1;
	// cin >> T;
	while(T--) {
		solve();
	}

	return 0;
}

C - Takahashi Gets Lost

思路:

这题范围很小,遍历每个点模拟一下就行,复杂度是O(H * W * N)

#include <bits/stdc++.h>
using namespace std;

#define int long long
char arr[505][505];
bool vis[505][505];

void solve() {
	int r, c, n;
	cin >> r >> c >> n;

	string s;
	cin >> s;

	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++) {
			cin >> arr[i][j];
		}
	}	

	auto check =[&] (int x, int y) {
		bool ok = 1;
		for (auto c : s) {
			// cout << x << " " << y << endl;
			int tx, ty;
			if(c == 'L') {
				tx = x;
				ty = y - 1;
			}
			else if(c == 'R') {
				tx = x;
				ty = y + 1;
			}
			else if(c == 'U') {
				tx = x - 1;
				ty = y;
			}
			else {
				tx = x + 1;
				ty = y;
			}
			// cerr << tx << " " << ty << "**\n";
			
			if(arr[tx][ty] == '.') {
				x = tx;
				y = ty;
			}
			else {
				ok = 0;
				break;
			}
		}

		if(ok) {
			vis[x][y] = 1;
		}
	};

	int ans = 0; 
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++) {
			if(arr[i][j] == '.') {
				check(i, j);
			}
		}
	}

	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++) {
			if(arr[i][j] == '.' && vis[i][j]) {
				// cout << i << " " << j << endl;
				ans++;
			}
		}
	}
	cout << ans << endl;
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int T = 1;
	// cin >> T;
	while(T--) {
		solve();
	}

	return 0;
}

D - Only one of two

题意:

给n,m,k,求第k个数,这个数的要求是只能被n和m其中的一个整除。

思路:

这个题我没有找到规律,但是给一个数很容易就能确定是第几个数,这个数量是递增的,所以我们可以用二分的方法

在0 - max(n, m) * k中找到。

#include <bits/stdc++.h>
using namespace std;

#define int long long

int gcd(int x, int y)
{
	int c;
	while(y)
	{
		c = x;
		x = y;
		y = c % y;
	}
	return x;
}

int lcm(int x, int y)
{
	return x * y / gcd(x, y);
}

void solve() {
	int n, m, k;
	cin >> n >> m >> k;

	int _lcm = lcm(n, m);

	int l1 = 0, r1 = max(n, m) * k ;
	while(l1 < r1) {
		int mid = (l1 + r1) >> 1;
		int num = mid / n + mid / m - 2 * (mid / _lcm);
		if(num < k) {
			l1 = mid + 1;
		}
		else {
			r1 = mid;
		}
	}

	if(l1 / n + l1 / m - 2 * (l1 / _lcm) == k) {
		cout << l1 << endl;
		return ;
	}
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int T = 1;
	// cin >> T;
	while(T--) {
		solve();
	}

	return 0;
}

$num = \frac{n}{a} + \frac{n}{b} - \frac{2n}{lcm} $

这个判断方法我叫他容斥(不知道对不对)


E - Alternating String

题意:

给n长度的字符串,有两种操作

  • $1 , l , r$ 将$l$ 到$r$的1变成0,0变成1
  • $2 , l , r$ ,查询子串l到r,如果是连续的10或者01就是好串否则就是坏串。

思路:

区间操作和区间查询,很明显的一个线段树题

起初我想用线段树直接模拟,下层向上层传递的要求是左边字符串和右边的字符串都是好串,然后左边的最右边的字符和右边最左边的字符不同。

我折腾了两个多小时,没有A。

我又开始观察这个字符串的特点,如果一段字符串反转了,那么他的好坏性质不会发生改变,改变的只能是最左边和最右边的字符。这个性质类似于差分。

再想想,题目要求的好串是相邻字符不同,这不就是差分每一位都是1?

维护差分的线段树:

  • 反转操作只反转 $l$ 和 $r + 1$ ,特殊的,如果 $l$ 是1不反转
  • 查询操作查询$l + 1 -> r$ 因为 $l$ 的差分值与前一个有关,只要查询的结果是$r - l$ 就是好串
#include <bits/stdc++.h>
using namespace std;

const int maxn = 5e5 + 5;
int arr[maxn];
int brr[maxn];

struct Node {
	int l, r;
	int lazy;
	int sum;
}tree[maxn << 2];

void push_up(int u) {
	tree[u].sum = (tree[u << 1].sum + tree[u << 1 | 1].sum);
}

void push_down(int u) {
	if(tree[u].lazy) {
		tree[u << 1].lazy = !tree[u << 1].lazy;
		tree[u << 1 | 1].lazy = !tree[u << 1 | 1].lazy;
		tree[u << 1].sum = tree[u << 1].r - tree[u << 1].l + 1 - tree[u << 1].sum;
		tree[u << 1 | 1].sum = tree[u << 1 | 1].r - tree[u << 1 | 1].l + 1 - tree[u << 1 | 1].sum;
		tree[u << 1].lazy = 0;
	}
}

void build_tree(int u, int l, int r) {
	tree[u].l = l, tree[u].r = r;
	if(l == r) {
		tree[u].sum = brr[l];
		return ;
	}

	int mid = (l + r) >> 1;
	build_tree(u << 1, l, mid);
	build_tree(u << 1 | 1, mid + 1, r);
	push_up(u);
}

void fz(int u, int l, int r) {
	// cerr << u << endl;
	if(tree[u].l >= l && tree[u].r <= r) {
		tree[u].sum = tree[u].r - tree[u].l + 1 - tree[u].sum;
		tree[u].lazy = !tree[u].lazy;
		return ;
	}

	push_down(u);
	int mid = (tree[u].l + tree[u].r) >> 1;
	if(mid >= l) {
		fz(u << 1, l, r);
	}
	if(mid < r) {
		fz(u << 1 | 1, l, r);
	}
	push_up(u);
}

int query(int u, int l, int r) {
	if(tree[u].l >= l && tree[u].r <= r) {
		return tree[u].sum;
	}
	push_down(u);
	int mid = (tree[u].l + tree[u].r) >> 1;
	int res = 0;
	if(mid >= l) {
		res += query(u << 1, l, r);
	}
	if(mid < r) {
		res += query(u << 1 | 1, l, r);
	}
	return res;
}

int main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int n, m;
	cin >> n >> m;

	for (int i = 1; i <= n; i++) {
		char c;
		cin >> c;
		if(c == '1') {
			arr[i] = 1;
		}
	}

	brr[1] = 1;
	for (int i = 2; i <= n; i++) {
		brr[i] = (arr[i] != arr[i - 1]);
	}	
	build_tree(1, 1, n);
	// cerr << "OK1\n";

	for (int i = 0; i < m; i++) {
		int op, l, r;
		cin >> op >> l >> r;
		if(op == 1) {
			if(l != 1) {
				fz(1, l, l);
			}
			if(r != n) {
				fz(1, r + 1, r + 1);
			}
		}
		else {
			if(l == r) {
				cout << "Yes\n";
			}
			else {	
				int t = query(1, l + 1, r);
				if(t == r - l) {
					cout << "Yes\n";
				}
				else {
					cout << "No\n";
				}
			}
		}
	}
	return 0;
}
posted @ 2024-02-24 14:54  contiguous  阅读(11)  评论(0编辑  收藏  举报