【系列】高斯消元

bzoj 1013

题目大意:

给出$n$维球体上的$n+1$个点,求球心

思路:

设球心坐标$(x_1,x_2,x_3 \cdots x_n)$

则对于任意两个点$(a_1,a_2 \cdots a_n),(b_1,b_2 \cdots b_n)$,得到$(x_1-a_1)^2+(x_2-a_2)^2 \cdots (x_n-a_n)^2=(x_1-b_1)^2+(x_2-b_2)^2 \cdots (x+n-b_n)^2$

移项后得到$2(a_1-b_1)x_1+2(a_2-b_2)x_2 \cdots 2(a_n-b_n)x_n = {a_1}^2-{b_1}^2+{a_2}^2-{b_2}^2 \cdots {a_n}^2-{b_n}^2$

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 200100
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define Fill(x,t) memset(x,t,sizeof(x))
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
28     return x*f;
29 }
30 int n;db a[15][15],g[15][15];
31 db sqr(db x) {return x*x;}
32 void Gauss()
33 {
34     int pos;rep(i,0,n-1)
35     {
36         pos=n;rep(j,i,n-1)if(fabs(a[j][i])>fabs(a[pos][i])) pos=j;
37         if(pos!=i) rep(j,0,n) swap(a[i][j],a[pos][j]);
38         dwn(j,n,i) rep(k,i+1,n-1) a[k][j]-=a[k][i]/a[i][i]*a[i][j];
39     }
40     dwn(i,n-1,0) {rep(j,i+1,n-1) a[i][n]-=a[j][n]*a[i][j];a[i][n]/=a[i][i];}
41 }
42 int main()
43 {
44     n=read();rep(i,0,n) rep(j,0,n-1) scanf("%lf",&g[i][j]);
45     rep(i,1,n) rep(j,0,n-1)
46         a[i-1][j]=2*(g[i][j]-g[i-1][j]),a[i-1][n]+=sqr(g[i][j])-sqr(g[i-1][j]);
47     Gauss();rep(i,0,n-1) printf("%.3lf ",a[i][n]);
48 }
View Code

 

bzoj 3270

题目大意:

一开始两个人在$s,t$两个点,当一个人在$i$点时,有$p_i$的概率不动,有$1-p_i$的概率向相邻的点等概率移动

如果两个人在一个点相遇就停止,求他们在每个点相遇的概率

思路:

设$f(i,j)$表示两个人在$i,j$的概率,设$x,y$分别为$i,j$的前驱

很容易得到方程$f(i,j)=\sum (i==x?p_x:\frac{1-p_x}{d_x})*(j==y?p_y:\frac{1-p_y}{d_y})$

对于$f(s,t)$概率为$1$,其余为$0$,一共$n^2$个方程消元即可

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 200100
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define Fill(x,t) memset(x,t,sizeof(x))
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
28     return x*f;
29 }
30 int n,m,ss,tt,mp[35][35],d[35];db a[410][410],p[35];
31 void Gauss(int n)
32 {
33     int pos;rep(i,0,n-1)
34     {
35         pos=n;rep(j,i,n-1)if(fabs(a[j][i])>fabs(a[pos][i])) pos=j;
36         if(pos!=i) rep(j,0,n) swap(a[i][j],a[pos][j]);
37         dwn(j,n,i) rep(k,i+1,n-1) a[k][j]-=a[k][i]/a[i][i]*a[i][j];
38     }
39     dwn(i,n-1,0) {rep(j,i+1,n-1) a[i][n]-=a[j][n]*a[i][j];a[i][n]/=a[i][i];}
40 }
41 inline int t(int x,int y) {return (x-1)*n+y-1;}
42 int main()
43 {
44     n=read(),m=read(),ss=read(),tt=read();int x,y;
45     while(m--) x=read(),y=read(),mp[x][y]=mp[y][x]=1,d[x]++,d[y]++;
46     rep(i,1,n) scanf("%lf",&p[i]),mp[i][i]=1;a[t(ss,tt)][n*n]=1.0;
47     rep(i,1,n) rep(j,1,n)
48     {
49         a[t(i,j)][t(i,j)]=1.0;
50         rep(x,1,n) rep(y,1,n) if(x^y&&mp[x][i]*mp[y][j])
51             a[t(i,j)][t(x,y)]-=1.0*(i==x?p[x]:(1.0-p[x])/d[x])*(j==y?p[y]:(1.0-p[y])/d[y]);
52     }
53     Gauss(n*n);rep(i,1,n) printf("%.6lf ",a[t(i,i)][n*n]);
54 }
View Code

 

posted @ 2019-04-12 09:12  jack_yyc  阅读(165)  评论(0编辑  收藏  举报