Hive函数:GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

参考:lxw大数据田地:http://lxw1234.com/archives/2015/04/193.htm

数据准备:

CREATE EXTERNAL TABLE test_data (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/user/jc_rc_ftp/test_data';

select * from test_data l;
+----------+-------------+-------------+--+
| l.month  |    l.day    | l.cookieid  |
+----------+-------------+-------------+--+
| 2015-03  | 2015-03-10  | cookie1     |
| 2015-03  | 2015-03-10  | cookie5     |
| 2015-03  | 2015-03-12  | cookie7     |
| 2015-04  | 2015-04-12  | cookie3     |
| 2015-04  | 2015-04-13  | cookie2     |
| 2015-04  | 2015-04-13  | cookie4     |
| 2015-04  | 2015-04-16  | cookie4     |
| 2015-03  | 2015-03-10  | cookie2     |
| 2015-03  | 2015-03-10  | cookie3     |
| 2015-04  | 2015-04-12  | cookie5     |
| 2015-04  | 2015-04-13  | cookie6     |
| 2015-04  | 2015-04-15  | cookie3     |
| 2015-04  | 2015-04-15  | cookie2     |
| 2015-04  | 2015-04-16  | cookie1     |
+----------+-------------+-------------+--+
14 rows selected (0.249 seconds)

GROUPING SETS

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM test_data 
GROUP BY month,day 
GROUPING SETS (month,day) 
ORDER BY GROUPING__ID;

等价于 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM test_data GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM test_data GROUP BY day

+----------+-------------+-----+---------------+--+
|  month   |     day     | uv  | grouping__id  |
+----------+-------------+-----+---------------+--+
| 2015-04  | NULL        | 6   | 1             |
| 2015-03  | NULL        | 5   | 1             |
| NULL     | 2015-04-16  | 2   | 2             |
| NULL     | 2015-04-15  | 2   | 2             |
| NULL     | 2015-04-13  | 3   | 2             |
| NULL     | 2015-04-12  | 2   | 2             |
| NULL     | 2015-03-12  | 1   | 2             |
| NULL     | 2015-03-10  | 4   | 2             |
+----------+-------------+-----+---------------+--+
8 rows selected (177.299 seconds)

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM test_data 
GROUP BY month,day 
GROUPING SETS (month,day,(month,day)) 
ORDER BY GROUPING__ID;

等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM test_data GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM test_data GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM test_data GROUP BY month,day
+----------+-------------+-----+---------------+--+
|  month   |     day     | uv  | grouping__id  |
+----------+-------------+-----+---------------+--+
| 2015-04  | NULL        | 6   | 1             |
| 2015-03  | NULL        | 5   | 1             |
| NULL     | 2015-03-10  | 4   | 2             |
| NULL     | 2015-04-16  | 2   | 2             |
| NULL     | 2015-04-15  | 2   | 2             |
| NULL     | 2015-04-13  | 3   | 2             |
| NULL     | 2015-04-12  | 2   | 2             |
| NULL     | 2015-03-12  | 1   | 2             |
| 2015-04  | 2015-04-16  | 2   | 3             |
| 2015-04  | 2015-04-12  | 2   | 3             |
| 2015-04  | 2015-04-13  | 3   | 3             |
| 2015-03  | 2015-03-12  | 1   | 3             |
| 2015-03  | 2015-03-10  | 4   | 3             |
| 2015-04  | 2015-04-15  | 2   | 3             |
+----------+-------------+-----+---------------+--+

备注:其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE

根据GROUP BY的维度的所有组合进行聚合。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM test_data 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID;

等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM test_data
UNION ALL 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM test_data GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM test_data GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM test_data GROUP BY month,day
+----------+-------------+-----+---------------+--+
|  month   |     day     | uv  | grouping__id  |
+----------+-------------+-----+---------------+--+
| NULL     | NULL        | 7   | 0             |
| 2015-03  | NULL        | 5   | 1             |
| 2015-04  | NULL        | 6   | 1             |
| NULL     | 2015-04-16  | 2   | 2             |
| NULL     | 2015-04-15  | 2   | 2             |
| NULL     | 2015-04-13  | 3   | 2             |
| NULL     | 2015-04-12  | 2   | 2             |
| NULL     | 2015-03-12  | 1   | 2             |
| NULL     | 2015-03-10  | 4   | 2             |
| 2015-04  | 2015-04-12  | 2   | 3             |
| 2015-04  | 2015-04-16  | 2   | 3             |
| 2015-03  | 2015-03-12  | 1   | 3             |
| 2015-03  | 2015-03-10  | 4   | 3             |
| 2015-04  | 2015-04-15  | 2   | 3             |
| 2015-04  | 2015-04-13  | 3   | 3             |
+----------+-------------+-----+---------------+--+

ROLLUP

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如,以month维度进行层级聚合:
SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM test_data 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;
可以实现这样的上钻过程:月天的UV->月的UV->总UV
+----------+-------------+-----+---------------+--+
|  month   |     day     | uv  | grouping__id  |
+----------+-------------+-----+---------------+--+
| NULL     | NULL        | 7   | 0             |
| 2015-04  | NULL        | 6   | 1             |
| 2015-03  | NULL        | 5   | 1             |
| 2015-04  | 2015-04-16  | 2   | 3             |
| 2015-04  | 2015-04-15  | 2   | 3             |
| 2015-04  | 2015-04-13  | 3   | 3             |
| 2015-04  | 2015-04-12  | 2   | 3             |
| 2015-03  | 2015-03-12  | 1   | 3             |
| 2015-03  | 2015-03-10  | 4   | 3             |
+----------+-------------+-----+---------------+--+
 
--把month和day调换顺序,则以day维度进行层级聚合: 
SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM test_data 
GROUP BY day,month 
WITH ROLLUP 
ORDER BY GROUPING__ID;
+-------------+----------+-----+---------------+--+
|     day     |  month   | uv  | grouping__id  |
+-------------+----------+-----+---------------+--+
| NULL        | NULL     | 7   | 0             |
| 2015-04-12  | NULL     | 2   | 1             |
| 2015-04-15  | NULL     | 2   | 1             |
| 2015-03-12  | NULL     | 1   | 1             |
| 2015-04-16  | NULL     | 2   | 1             |
| 2015-03-10  | NULL     | 4   | 1             |
| 2015-04-13  | NULL     | 3   | 1             |
| 2015-04-16  | 2015-04  | 2   | 3             |
| 2015-04-15  | 2015-04  | 2   | 3             |
| 2015-04-13  | 2015-04  | 3   | 3             |
| 2015-03-12  | 2015-03  | 1   | 3             |
| 2015-03-10  | 2015-03  | 4   | 3             |
| 2015-04-12  | 2015-04  | 2   | 3             |
+-------------+----------+-----+---------------+--+

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

 

posted @ 2018-03-16 16:33  cctext  阅读(2137)  评论(0编辑  收藏  举报