Python:使用pymssql批量插入csv文件到数据库测试

并行进程怎么使用?

 1 import os
 2 import sys
 3 import time
 4 
 5 def processFunc(i):
 6     time.sleep(10-i)
 7     print i
 8     
 9 if __name__=='__main__':
10     from multiprocessing import Pool
11     
12     pool=Pool()
13     
14     for i in range(0,10):
15         print i
16         
17     print '----------------split line-----------------'
18     
19     for i in range(0,10):
20         pool.apply_async(processFunc,args=(i,))
21         
22     print 'waiting multi processes complete...'
23     pool.close()
24     pool.join()
25     
26     s = raw_input("please press enter key to exit...")
27     print s
28     

怎么确定我们使用的是多进程呢?

实现批量入库:

import os
import sys
import pymssql

server="172.21.111.222"
user="Nuser"
password="NDb"
database="iNek_TestWithPython"

def connectonSqlServer():
        conn=pymssql.connect(server,user,password,database)
        cursor=conn.cursor()
        cursor.execute("""select getdate()""")
        row=cursor.fetchone()
        while row:
                 print("sqlserver version:%s"%(row[0]))
                 row=cursor.fetchone()

        conn.close()

def getCreateTableScript(enodebid):
        script="""IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[rFile{0}]') AND type in (N'U'))
BEGIN
CREATE TABLE [dbo].[rFile{0}](
    [OID] [bigint] IDENTITY(1,1) NOT NULL,
    [TimeStamp] [datetime] NULL,
    [rTime] [datetime] NOT NULL,
    [bTime] [datetime] NOT NULL,
    [eTim] [datetime] NOT NULL,
    [rid] [int] NOT NULL,
    [s] [int] NOT NULL,
    [c] [int] NOT NULL,
    [muid] [decimal](18, 2) NULL,    
    [lsa] [decimal](18, 2) NULL,
    [lsrip] [int] NULL,
    [lcOID] [int] NULL,    
    [lcrq] [decimal](18, 2) NULL,
    [gc2c1] [int] NULL,    
    [tdcCP] [decimal](18, 2) NULL,
...
... CONSTRAINT [PK_rFile{0}] PRIMARY KEY NONCLUSTERED ( [OID] ASC, [rTime] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PS_OnrTime]([rTime]) ) ON [PS_OnrTime]([rTime]) END IF NOT EXISTS (SELECT * FROM sys.indexes WHERE object_id = OBJECT_ID(N'[dbo].[rFile{0}]') AND name = N'IX_rFile_c{0}') BEGIN CREATE NONCLUSTERED INDEX [IX_rFile_c{0}] ON [dbo].[rFile{0}] ([c] ASC)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] End
...
...
""".format(enodebid) return script def getBulkInsertScript(enodebid,csvFilePath,formatFilePath): script="""BULK INSERT [dbo].[rFile{0}] FROM '{1}' WITH ( BATCHSIZE=10000, FIELDTERMINATOR='\\t', ROWTERMINATOR ='\\r\\n', FORMATFILE ='{2}' )""".format(enodebid,csvFilePath,formatFilePath) return script def batchInsertToDB(enodebid,filePath): from time import time start=time() fileExt=os.path.splitext(filePath)[1] #print fileExt if os.path.isfile(filePath) and (fileExt=='.gz' or fileExt=='.zip' or fileExt=='.xml' or fileExt==".csv"): # 1)create table with index conn=pymssql.connect(server,user,password,database) cursor=conn.cursor() cursor.execute(getCreateTableScript(enodebid)) conn.commit() # 2)load csv file to db cursor.execute(getBulkInsertScript(enodebid=enodebid,csvFilePath=filePath,formatFilePath="D:\\python_program\\rFileTableFormat.xml")) conn.commit() conn.close() end=time() print 'file:%s |size:%0.2fMB |timeuse:%0.1fs' % (os.path.basename(filePath),os.path.getsize(filePath)/1024/1024,end-start) if __name__=="__main__": from time import time #it's mutilple pro2cess not mutilple thread. from multiprocessing import Pool start=time() pool=Pool() rootDir="D:\\python_program\\csv" for dirName in os.listdir(rootDir): for fileName in os.listdir(rootDir+'\\'+dirName): pool.apply_async(batchInsertToDB,args=(dirName,rootDir+'\\'+dirName+'\\'+fileName,)) #single pool apply #batchInsertToDB(dirName,rootDir+'\\'+dirName+'\\'+fileName) print 'Waiting for all subprocesses done.....' pool.close() pool.join() end=time() print 'use time: %.1fs' %(end-start)

测试环境:

2.22服务器,CPU:E54620,Memory:64,磁盘SAS/万转以上。

测试速度:41分钟,处理200个ENB,一共4749个csv文件,一共19.1G,入库记录1 1491 1843条记录,每条记录30个字段左右,平均每秒入库46712条记录(每条记录32列)。

Python是8个进程运行。

监控图:

平均数据库日志文件写入速度:70M/S

平均数据库      文件写入速度:30M/S~40M/S

.net 并行多进程操作:

-- 2016-08-02 00:06:19.567 2016-08-01 23:37:14.067
-- 16parallel task :10s/enb
-- 2016-08-02 00:29:42.083 2016-08-02 00:09:29.297
-- 8 parallel task : 7s/enb
select (20*60+13)/160

 

posted @ 2016-07-29 01:49  cctext  阅读(5950)  评论(0编辑  收藏  举报