Spark(四十九):Spark On YARN启动流程源码分析(一)

引导:

该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析。

spark-submit的入口函数

一般提交一个spark作业的方式采用spark-submit来提交

# Run on a Spark standalone cluster
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000

这个是提交到standalone集群的方式,其中spark-submit内容如下:

https://github.com/apache/spark/blob/branch-2.4/bin/spark-submit

或者从spark2.4安装目录下找到spark-submit

[cp011@CDH-103 bin]$ 
more opt/cloudera/parcels/SPARK2-2.4.0.cloudera1-1.cdh5.13.3.p0.1007356/lib/spark2/bin/spark-submit

#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

if [ -z "${SPARK_HOME}" ]; then
  source "$(dirname "$0")"/find-spark-home
fi

# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0

exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"

从spark-submit内容上来看,可以发现spark-submit提交任务时,实际上最终是调用了SparkSubmit类。

从SparkSubmit的半生类上可以看到入口main函数:

object SparkSubmit extends CommandLineUtils with Logging {
  // Cluster managers
  private val YARN = 1
  private val STANDALONE = 2
  private val MESOS = 4
  private val LOCAL = 8
  private val KUBERNETES = 16
  private val ALL_CLUSTER_MGRS = YARN | STANDALONE | MESOS | LOCAL | KUBERNETES

  // Deploy modes
  private val CLIENT = 1
  private val CLUSTER = 2
  private val ALL_DEPLOY_MODES = CLIENT | CLUSTER

  // Special primary resource names that represent shells rather than application jars.
  private val SPARK_SHELL = "spark-shell"
  private val PYSPARK_SHELL = "pyspark-shell"
  private val SPARKR_SHELL = "sparkr-shell"
  private val SPARKR_PACKAGE_ARCHIVE = "sparkr.zip"
  private val R_PACKAGE_ARCHIVE = "rpkg.zip"

  private val CLASS_NOT_FOUND_EXIT_STATUS = 101

  // Following constants are visible for testing.
  private[deploy] val YARN_CLUSTER_SUBMIT_CLASS =
    "org.apache.spark.deploy.yarn.YarnClusterApplication"
  private[deploy] val REST_CLUSTER_SUBMIT_CLASS = classOf[RestSubmissionClientApp].getName()
  private[deploy] val STANDALONE_CLUSTER_SUBMIT_CLASS = classOf[ClientApp].getName()
  private[deploy] val KUBERNETES_CLUSTER_SUBMIT_CLASS =
    "org.apache.spark.deploy.k8s.submit.KubernetesClientApplication"

  override def main(args: Array[String]): Unit = {
    val submit = new SparkSubmit() {
      self =>

      override protected def parseArguments(args: Array[String]): SparkSubmitArguments = {
        new SparkSubmitArguments(args) {
          override protected def logInfo(msg: => String): Unit = self.logInfo(msg)

          override protected def logWarning(msg: => String): Unit = self.logWarning(msg)
        }
      }

      override protected def logInfo(msg: => String): Unit = printMessage(msg)

      override protected def logWarning(msg: => String): Unit = printMessage(s"Warning: $msg")

      override def doSubmit(args: Array[String]): Unit = {
        try {
          super.doSubmit(args)
        } catch {
          case e: SparkUserAppException =>
            exitFn(e.exitCode)
        }
      }

    }

    submit.doSubmit(args)
  }
  。。。
}

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala

在SparkSubmit类中doSubmit函数实现十分简单:

  def doSubmit(args: Array[String]): Unit = {
    // Initialize logging if it hasn't been done yet. Keep track of whether logging needs to
    // be reset before the application starts.
    val uninitLog = initializeLogIfNecessary(true, silent = true)

    val appArgs = parseArguments(args)
    if (appArgs.verbose) {
      logInfo(appArgs.toString)
    }
    appArgs.action match {
      case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)
      case SparkSubmitAction.KILL => kill(appArgs)
      case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
      case SparkSubmitAction.PRINT_VERSION => printVersion()
    }
  }

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala

不难明白这是一个主控函数,根据接受的action类型,调用对应的处理:

l  case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)---提交spark任务

l  case SparkSubmitAction.KILL => kill(appArgs)---杀掉spark任务

l  case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)---获取任务状态

l  case SparkSubmitAction.PRINT_VERSION => printVersion()---打印版本信息

我们想明白spark任务提交的具体实现类,需要进入submit函数查看具体的业务:

/**
   * 运行包含两步:
   * 第一步,我们通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。
   * 第二步,我们使用这个启动环境来调用子主类的主方法。
   * Submit the application using the provided parameters.
   * 使用提供的参数信息来提交application
   * This runs in two steps. First, we prepare the launch environment by setting up
   * the appropriate classpath, system properties, and application arguments for
   * running the child main class based on the cluster manager and the deploy mode.
   * Second, we use this launch environment to invoke the main method of the child
   * main class.
   */
  @tailrec
  private def submit(args: SparkSubmitArguments, uninitLog: Boolean): Unit = {
    // 通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。
    val (childArgs, childClasspath, sparkConf, childMainClass) = prepareSubmitEnvironment(args)

    def doRunMain(): Unit = {
      if (args.proxyUser != null) {
        val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
          UserGroupInformation.getCurrentUser())
        try {
          proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
            override def run(): Unit = {
              runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose)
            }
          })
        } catch {
          case e: Exception =>
            // Hadoop's AuthorizationException suppresses the exception's stack trace, which
            // makes the message printed to the output by the JVM not very helpful. Instead,
            // detect exceptions with empty stack traces here, and treat them differently.
            if (e.getStackTrace().length == 0) {
              error(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}")
            } else {
              throw e
            }
        }
      } else {
        runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose)
      }
    }

    // Let the main class re-initialize the logging system once it starts.
    if (uninitLog) {
      Logging.uninitialize()
}

    //在独立集群模式下,有两个提交网关:
    //(1)使用o.a.s.deploy.Client作为包装器的传统RPC网关
    //(2)Spark 1.3中引入了新的基于REST的网关
    //后者是Spark 1.3的默认行为,但如果主端点不是REST服务器,则Spark Submit将故障转移到使用旧网关。
    // In standalone cluster mode, there are two submission gateways:
    //   (1) The traditional RPC gateway using o.a.s.deploy.Client as a wrapper
    //   (2) The new REST-based gateway introduced in Spark 1.3
    // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over
    // to use the legacy gateway if the master endpoint turns out to be not a REST server.
    if (args.isStandaloneCluster && args.useRest) {
      try {
        logInfo("Running Spark using the REST application submission protocol.")
        doRunMain()
      } catch {
        // Fail over to use the legacy submission gateway
        case e: SubmitRestConnectionException =>
          logWarning(s"Master endpoint ${args.master} was not a REST server. " +
            "Falling back to legacy submission gateway instead.")
          args.useRest = false
          submit(args, false)
      }
    // 其他模式,只需直接运行主类
    // In all other modes, just run the main class as prepared
    } else {
      doRunMain()
    }
  }

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala

上边submit(…)函数最后一行会调用该函数内部自定义函数doRunMain(),该函数会根据应用程序参数(args.proxyUser)做一次判断处理:

1)  如果是代理用户,则使用proxyUser 对runMain()函数包装调用;

2)  如果非代理用户,则直接调用runMain()函数。

任务运行环境准备

通过设置适当的类路径,系统属性和应用程序参数来准备启动环境,以便基于集群管理和部署模式运行子主类。

val (childArgs, childClasspath, sparkConf, childMainClass) = prepareSubmitEnvironment(args)
/**
   * 未提交的应用程序准备环境
   * Prepare the environment for submitting an application.
   *
   * @param args the parsed SparkSubmitArguments used for environment preparation.
   * @param conf the Hadoop Configuration, this argument will only be set in unit test.
   * @return a 4-tuple:
   *        (1) the arguments for the child process,
   *        (2) a list of classpath entries for the child,
   *        (3) a map of system properties, and
   *        (4) the main class for the child
   *        返回一个4元组(childArgs, childClasspath, sparkConf, childMainClass)
   *        childArgs:子进程的参数
   *        childClasspath:子级的类路径条目列表
   *        sparkConf:系统参数map集合
   *        childMainClass:子级的主类
   *
   * Exposed for testing.
   */
  private[deploy] def prepareSubmitEnvironment(
      args: SparkSubmitArguments,
      conf: Option[HadoopConfiguration] = None)
      : (Seq[String], Seq[String], SparkConf, String) = {
    // Return values
    val childArgs = new ArrayBuffer[String]()
    val childClasspath = new ArrayBuffer[String]()
    val sparkConf = new SparkConf()
    var childMainClass = ""

    // 设置集群管理器,
    // 从这个列表中可以得到信息:spark目前支持的集群管理器包含:YARN,STANDLONE,MESOS,KUBERNETES,LOCAL,
    // 在spark-submit参数的--master中指定。
    // Set the cluster manager
    val clusterManager: Int = args.master match {
      case "yarn" => YARN
      case "yarn-client" | "yarn-cluster" => 
      // spark2.0之前可以使用yarn-cleint,yarn-cluster作为--master参数,从spark2.0起,不再支持,这里默认自动转化为yarn,并给出警告信息。
        logWarning(s"Master ${args.master} is deprecated since 2.0." +
          " Please use master \"yarn\" with specified deploy mode instead.")
        YARN
      case m if m.startsWith("spark") => STANDALONE
      case m if m.startsWith("mesos") => MESOS
      case m if m.startsWith("k8s") => KUBERNETES
      case m if m.startsWith("local") => LOCAL
      case _ =>
        error("Master must either be yarn or start with spark, mesos, k8s, or local")
        -1
    }

    // 设置部署模式--deploy-mode,默认为client模式。
    // Set the deploy mode; default is client mode
    var deployMode: Int = args.deployMode match {
      case "client" | null => CLIENT
      case "cluster" => CLUSTER
      case _ =>
        error("Deploy mode must be either client or cluster")
        -1
    }
    
    // 由于”yarn-cluster“和”yarn-client“方式已被弃用,因此封装了--master和--deploy-mode。
    // 如果只指定了一个--master和--deploy-mode,我们有一些逻辑来推断它们之间的关系;如果它们不一致,我们可以提前退出。
    // Because the deprecated way of specifying "yarn-cluster" and "yarn-client" encapsulate both
    // the master and deploy mode, we have some logic to infer the master and deploy mode
    // from each other if only one is specified, or exit early if they are at odds.
    if (clusterManager == YARN) {
      (args.master, args.deployMode) match {
        case ("yarn-cluster", null) =>
          deployMode = CLUSTER
          args.master = "yarn"
        case ("yarn-cluster", "client") =>
          error("Client deploy mode is not compatible with master \"yarn-cluster\"")
        case ("yarn-client", "cluster") =>
          error("Cluster deploy mode is not compatible with master \"yarn-client\"")
        case (_, mode) =>
          args.master = "yarn"
      }

      // 如果我们想去使用YARN的话,必须确保它包含在我们产品中。
      // Make sure YARN is included in our build if we're trying to use it
      if (!Utils.classIsLoadable(YARN_CLUSTER_SUBMIT_CLASS) && !Utils.isTesting) {
        error(
          "Could not load YARN classes. " +
          "This copy of Spark may not have been compiled with YARN support.")
      }
    }

    if (clusterManager == KUBERNETES) {
      args.master = Utils.checkAndGetK8sMasterUrl(args.master)
      // Make sure KUBERNETES is included in our build if we're trying to use it
      if (!Utils.classIsLoadable(KUBERNETES_CLUSTER_SUBMIT_CLASS) && !Utils.isTesting) {
        error(
          "Could not load KUBERNETES classes. " +
            "This copy of Spark may not have been compiled with KUBERNETES support.")
      }
    }

    // 下边的一些模式是不支持,尽早让它们失败。
    // Fail fast, the following modes are not supported or applicable
    (clusterManager, deployMode) match {
      case (STANDALONE, CLUSTER) if args.isPython =>
        error("Cluster deploy mode is currently not supported for python " +
          "applications on standalone clusters.")
      case (STANDALONE, CLUSTER) if args.isR =>
        error("Cluster deploy mode is currently not supported for R " +
          "applications on standalone clusters.")
      case (LOCAL, CLUSTER) =>
        error("Cluster deploy mode is not compatible with master \"local\"")
      case (_, CLUSTER) if isShell(args.primaryResource) =>
        error("Cluster deploy mode is not applicable to Spark shells.")
      case (_, CLUSTER) if isSqlShell(args.mainClass) =>
        error("Cluster deploy mode is not applicable to Spark SQL shell.")
      case (_, CLUSTER) if isThriftServer(args.mainClass) =>
        error("Cluster deploy mode is not applicable to Spark Thrift server.")
      case _ =>
    }
    
    // 如果args.deployMode为null的话,给它赋值更新。稍后它将作为Spark的属性向下传递
    // Update args.deployMode if it is null. It will be passed down as a Spark property later.
    (args.deployMode, deployMode) match {
      case (null, CLIENT) => args.deployMode = "client"
      case (null, CLUSTER) => args.deployMode = "cluster"
      case _ =>
    }
    // 根据资源管理器和部署模式,进行逻辑判断出几种特殊运行方式。
    val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER
    val isMesosCluster = clusterManager == MESOS && deployMode == CLUSTER
    val isStandAloneCluster = clusterManager == STANDALONE && deployMode == CLUSTER
    val isKubernetesCluster = clusterManager == KUBERNETES && deployMode == CLUSTER
    val isMesosClient = clusterManager == MESOS && deployMode == CLIENT

    if (!isMesosCluster && !isStandAloneCluster) {
      // Resolve maven dependencies if there are any and add classpath to jars. Add them to py-files
      // too for packages that include Python code
      val resolvedMavenCoordinates = DependencyUtils.resolveMavenDependencies(
        args.packagesExclusions, args.packages, args.repositories, args.ivyRepoPath,
        args.ivySettingsPath)

      if (!StringUtils.isBlank(resolvedMavenCoordinates)) {
        args.jars = mergeFileLists(args.jars, resolvedMavenCoordinates)
        if (args.isPython || isInternal(args.primaryResource)) {
          args.pyFiles = mergeFileLists(args.pyFiles, resolvedMavenCoordinates)
        }
      }

      // install any R packages that may have been passed through --jars or --packages.
      // Spark Packages may contain R source code inside the jar.
      if (args.isR && !StringUtils.isBlank(args.jars)) {
        RPackageUtils.checkAndBuildRPackage(args.jars, printStream, args.verbose)
      }
    }

    args.sparkProperties.foreach { case (k, v) => sparkConf.set(k, v) }
    val hadoopConf = conf.getOrElse(SparkHadoopUtil.newConfiguration(sparkConf))
    val targetDir = Utils.createTempDir()

    // assure a keytab is available from any place in a JVM
    if (clusterManager == YARN || clusterManager == LOCAL || isMesosClient) {
      if (args.principal != null) {
        if (args.keytab != null) {
          require(new File(args.keytab).exists(), s"Keytab file: ${args.keytab} does not exist")
          // Add keytab and principal configurations in sysProps to make them available
          // for later use; e.g. in spark sql, the isolated class loader used to talk
          // to HiveMetastore will use these settings. They will be set as Java system
          // properties and then loaded by SparkConf
          sparkConf.set(KEYTAB, args.keytab)
          sparkConf.set(PRINCIPAL, args.principal)
          UserGroupInformation.loginUserFromKeytab(args.principal, args.keytab)
        }
      }
    }

    // Resolve glob path for different resources.
    args.jars = Option(args.jars).map(resolveGlobPaths(_, hadoopConf)).orNull
    args.files = Option(args.files).map(resolveGlobPaths(_, hadoopConf)).orNull
    args.pyFiles = Option(args.pyFiles).map(resolveGlobPaths(_, hadoopConf)).orNull
    args.archives = Option(args.archives).map(resolveGlobPaths(_, hadoopConf)).orNull

    lazy val secMgr = new SecurityManager(sparkConf)

    // In client mode, download remote files.
    var localPrimaryResource: String = null
    var localJars: String = null
    var localPyFiles: String = null
    if (deployMode == CLIENT) {
      localPrimaryResource = Option(args.primaryResource).map {
        downloadFile(_, targetDir, sparkConf, hadoopConf, secMgr)
      }.orNull
      localJars = Option(args.jars).map {
        downloadFileList(_, targetDir, sparkConf, hadoopConf, secMgr)
      }.orNull
      localPyFiles = Option(args.pyFiles).map {
        downloadFileList(_, targetDir, sparkConf, hadoopConf, secMgr)
      }.orNull
    }

    // When running in YARN, for some remote resources with scheme:
    //   1. Hadoop FileSystem doesn't support them.
    //   2. We explicitly bypass Hadoop FileSystem with "spark.yarn.dist.forceDownloadSchemes".
    // We will download them to local disk prior to add to YARN's distributed cache.
    // For yarn client mode, since we already download them with above code, so we only need to
    // figure out the local path and replace the remote one.
    if (clusterManager == YARN) {
      val forceDownloadSchemes = sparkConf.get(FORCE_DOWNLOAD_SCHEMES)

      def shouldDownload(scheme: String): Boolean = {
        forceDownloadSchemes.contains("*") || forceDownloadSchemes.contains(scheme) ||
          Try { FileSystem.getFileSystemClass(scheme, hadoopConf) }.isFailure
      }

      def downloadResource(resource: String): String = {
        val uri = Utils.resolveURI(resource)
        uri.getScheme match {
          case "local" | "file" => resource
          case e if shouldDownload(e) =>
            val file = new File(targetDir, new Path(uri).getName)
            if (file.exists()) {
              file.toURI.toString
            } else {
              downloadFile(resource, targetDir, sparkConf, hadoopConf, secMgr)
            }
          case _ => uri.toString
        }
      }

      args.primaryResource = Option(args.primaryResource).map { downloadResource }.orNull
      args.files = Option(args.files).map { files =>
        Utils.stringToSeq(files).map(downloadResource).mkString(",")
      }.orNull
      args.pyFiles = Option(args.pyFiles).map { pyFiles =>
        Utils.stringToSeq(pyFiles).map(downloadResource).mkString(",")
      }.orNull
      args.jars = Option(args.jars).map { jars =>
        Utils.stringToSeq(jars).map(downloadResource).mkString(",")
      }.orNull
      args.archives = Option(args.archives).map { archives =>
        Utils.stringToSeq(archives).map(downloadResource).mkString(",")
      }.orNull
    }

    // If we're running a python app, set the main class to our specific python runner
    。。。。
    // In YARN mode for an R app, add the SparkR package archive and the R package
    // archive containing all of the built R libraries to archives so that they can
    // be distributed with the job
    。。。。
    // TODO: Support distributing R packages with standalone cluster
    。。。。
    // TODO: Support distributing R packages with mesos cluster
    。。。。
    // If we're running an R app, set the main class to our specific R runner
    。。。。   

    // Special flag to avoid deprecation warnings at the client
    sys.props("SPARK_SUBMIT") = "true"

    // In client mode, launch the application main class directly
    // In addition, add the main application jar and any added jars (if any) to the classpath
    if (deployMode == CLIENT) {
      childMainClass = args.mainClass
      if (localPrimaryResource != null && isUserJar(localPrimaryResource)) {
        childClasspath += localPrimaryResource
      }
      if (localJars != null) { childClasspath ++= localJars.split(",") }
    }
    // Add the main application jar and any added jars to classpath in case YARN client
    // requires these jars.
    // This assumes both primaryResource and user jars are local jars, or already downloaded
    // to local by configuring "spark.yarn.dist.forceDownloadSchemes", otherwise it will not be
    // added to the classpath of YARN client.
    if (isYarnCluster) {
      if (isUserJar(args.primaryResource)) {
        childClasspath += args.primaryResource
      }
      if (args.jars != null) { childClasspath ++= args.jars.split(",") }
    }

    if (deployMode == CLIENT) {
      if (args.childArgs != null) { childArgs ++= args.childArgs }
    }

    // Map all arguments to command-line options or system properties for our chosen mode
    for (opt <- options) {
      if (opt.value != null &&
          (deployMode & opt.deployMode) != 0 &&
          (clusterManager & opt.clusterManager) != 0) {
        if (opt.clOption != null) { childArgs += (opt.clOption, opt.value) }
        if (opt.confKey != null) { sparkConf.set(opt.confKey, opt.value) }
      }
    }

    // In case of shells, spark.ui.showConsoleProgress can be true by default or by user.
    if (isShell(args.primaryResource) && !sparkConf.contains(UI_SHOW_CONSOLE_PROGRESS)) {
      sparkConf.set(UI_SHOW_CONSOLE_PROGRESS, true)
    }

    // Let YARN know it's a pyspark app, so it distributes needed libraries.
    if (clusterManager == YARN) {
      if (args.isPython) {
        sparkConf.set("spark.yarn.isPython", "true")
      }
    }

    // In yarn-cluster mode, use yarn.Client as a wrapper around the user class
    if (isYarnCluster) {
      childMainClass = YARN_CLUSTER_SUBMIT_CLASS
      if (args.isPython) {
        childArgs += ("--primary-py-file", args.primaryResource)
        childArgs += ("--class", "org.apache.spark.deploy.PythonRunner")
      } else if (args.isR) {
        val mainFile = new Path(args.primaryResource).getName
        childArgs += ("--primary-r-file", mainFile)
        childArgs += ("--class", "org.apache.spark.deploy.RRunner")
      } else {
        if (args.primaryResource != SparkLauncher.NO_RESOURCE) {
          childArgs += ("--jar", args.primaryResource)
        }
        childArgs += ("--class", args.mainClass)
      }
      if (args.childArgs != null) {
        args.childArgs.foreach { arg => childArgs += ("--arg", arg) }
      }
    }

    // Load any properties specified through --conf and the default properties file
    for ((k, v) <- args.sparkProperties) {
      sparkConf.setIfMissing(k, v)
    }

    // Ignore invalid spark.driver.host in cluster modes.
    if (deployMode == CLUSTER) {
      sparkConf.remove("spark.driver.host")
    }

    // Resolve paths in certain spark properties
    val pathConfigs = Seq(
      "spark.jars",
      "spark.files",
      "spark.yarn.dist.files",
      "spark.yarn.dist.archives",
      "spark.yarn.dist.jars")
    pathConfigs.foreach { config =>
      // Replace old URIs with resolved URIs, if they exist
      sparkConf.getOption(config).foreach { oldValue =>
        sparkConf.set(config, Utils.resolveURIs(oldValue))
      }
    }

    // Resolve and format python file paths properly before adding them to the PYTHONPATH.
    // The resolving part is redundant in the case of --py-files, but necessary if the user
    // explicitly sets `spark.submit.pyFiles` in his/her default properties file.
    sparkConf.getOption("spark.submit.pyFiles").foreach { pyFiles =>
      val resolvedPyFiles = Utils.resolveURIs(pyFiles)
      val formattedPyFiles = if (!isYarnCluster && !isMesosCluster) {
        PythonRunner.formatPaths(resolvedPyFiles).mkString(",")
      } else {
        // Ignoring formatting python path in yarn and mesos cluster mode, these two modes
        // support dealing with remote python files, they could distribute and add python files
        // locally.
        resolvedPyFiles
      }
      sparkConf.set("spark.submit.pyFiles", formattedPyFiles)
    }

    (childArgs, childClasspath, sparkConf, childMainClass)
  }

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala

准备Yarn(Cluster Manager)的执行类:

使用spark-submit(https://github.com/apache/spark/blob/branch-2.4/bin/spark-submit)启动时,实际上执行的是exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"

在SparkSubmit中

private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments,conf: Option[HadoopConfiguration] = None): (Seq[String], Seq[String], SparkConf, String)

方法中会为spark提交做准备,准备好运行环境相关。

其中这方法内部代码中,发现当cluster manager为yarn时:

1)当--deploy-mode:cluster时

会调用YarnClusterApplication进行提交

YarnClusterApplication这是org.apache.spark.deploy.yarn.Client中的一个内部类,在YarnClusterApplication中new了一个Client对象,并调用了run方法

private[spark] class YarnClusterApplication extends SparkApplication {

  override def start(args: Array[String], conf: SparkConf): Unit = {
    // SparkSubmit would use yarn cache to distribute files & jars in yarn mode,
    // so remove them from sparkConf here for yarn mode.
    conf.remove("spark.jars")
    conf.remove("spark.files")

    new Client(new ClientArguments(args), conf).run()
  }

}

https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala

2)当--deploy-mode:client时

调用application-jar.jar自身main函数,执行的是JavaMainApplication

/**
 * Entry point for a Spark application. Implementations must provide a no-argument constructor.
 */
private[spark] trait SparkApplication {

  def start(args: Array[String], conf: SparkConf): Unit

}

/**
 * Implementation of SparkApplication that wraps a standard Java class with a "main" method.
 *
 * Configuration is propagated to the application via system properties, so running multiple
 * of these in the same JVM may lead to undefined behavior due to configuration leaks.
 */
private[deploy] class JavaMainApplication(klass: Class[_]) extends SparkApplication {

  override def start(args: Array[String], conf: SparkConf): Unit = {
    val mainMethod = klass.getMethod("main", new Array[String](0).getClass)
    if (!Modifier.isStatic(mainMethod.getModifiers)) {
      throw new IllegalStateException("The main method in the given main class must be static")
    }

    val sysProps = conf.getAll.toMap
    sysProps.foreach { case (k, v) =>
      sys.props(k) = v
    }

    mainMethod.invoke(null, args)
  }

}

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkApplication.scala

从JavaMainApplication实现可以发现,JavaSparkApplication中调用start方法时,只是通过反射执行application-jar.jar的main函数。

提交到Yarn

yarn-cluster运行流程:

当yarn-custer模式中,YarnClusterApplication类中运行的是Client中run方法,Client#run()中实现了任务提交流程:

/**
   * Submit an application to the ResourceManager.
   * If set spark.yarn.submit.waitAppCompletion to true, it will stay alive
   * reporting the application's status until the application has exited for any reason.
   * Otherwise, the client process will exit after submission.
   * If the application finishes with a failed, killed, or undefined status,
   * throw an appropriate SparkException.
   */
  def run(): Unit = {
    this.appId = submitApplication()
    if (!launcherBackend.isConnected() && fireAndForget) {
      val report = getApplicationReport(appId)
      val state = report.getYarnApplicationState
      logInfo(s"Application report for $appId (state: $state)")
      logInfo(formatReportDetails(report))
      if (state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) {
        throw new SparkException(s"Application $appId finished with status: $state")
      }
    } else {
      val YarnAppReport(appState, finalState, diags) = monitorApplication(appId)
      if (appState == YarnApplicationState.FAILED || finalState == FinalApplicationStatus.FAILED) {
        diags.foreach { err =>
          logError(s"Application diagnostics message: $err")
        }
        throw new SparkException(s"Application $appId finished with failed status")
      }
      if (appState == YarnApplicationState.KILLED || finalState == FinalApplicationStatus.KILLED) {
        throw new SparkException(s"Application $appId is killed")
      }
      if (finalState == FinalApplicationStatus.UNDEFINED) {
        throw new SparkException(s"The final status of application $appId is undefined")
      }
    }
  }

https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala

在Client类的run()方法中会调用submitApplication()方法,该方法实现:

  /**
   * Submit an application running our ApplicationMaster to the ResourceManager.
   *
   * The stable Yarn API provides a convenience method (YarnClient#createApplication) for
   * creating applications and setting up the application submission context. This was not
   * available in the alpha API.
   */
  def submitApplication(): ApplicationId = {
    var appId: ApplicationId = null
    try {
      launcherBackend.connect()
      yarnClient.init(hadoopConf)
      yarnClient.start()

      logInfo("Requesting a new application from cluster with %d NodeManagers"
        .format(yarnClient.getYarnClusterMetrics.getNumNodeManagers))

      // Get a new application from our RM
      val newApp = yarnClient.createApplication()
      val newAppResponse = newApp.getNewApplicationResponse()
      appId = newAppResponse.getApplicationId()

      new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT),
        Option(appId.toString)).setCurrentContext()

      // Verify whether the cluster has enough resources for our AM
      verifyClusterResources(newAppResponse)

      // Set up the appropriate contexts to launch our AM
      val containerContext = createContainerLaunchContext(newAppResponse)
      val appContext = createApplicationSubmissionContext(newApp, containerContext)

      // Finally, submit and monitor the application
      logInfo(s"Submitting application $appId to ResourceManager")
      yarnClient.submitApplication(appContext)
      launcherBackend.setAppId(appId.toString)
      reportLauncherState(SparkAppHandle.State.SUBMITTED)

      appId
    } catch {
      case e: Throwable =>
        if (appId != null) {
          cleanupStagingDir(appId)
        }
        throw e
    }
  }

https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala

run()方法则是实现向yarn中的ResourceManager(后文全部简称RM)提交运行任务,并运行我们的ApplicationMaster(后文简称AM)。

稳定的Yarn API提供了一种方便的方法(YarnClient#createApplication),用于创建应用程序和设置应用程序提交上下文。

submitApplication()方法具体操作步骤:

l  初始化并启动YarnClient,后边将使用yarnClient提供的各种API

l  通过调用yarnClient#createApplication()方法,从RM获取一个newApp(application),该newApp用于运行AM。通过newApp#getNewApplicationResponse()返回newApp需要资源情况(newAppResponse)。

l  通过newAppResponse验证集群是否有足够的资源来运行AM。

l  设置适当的上下文来以启动AM。

l  调用yarnClient#submitApplication(appContext)向yarn提交任务启动的请求,并监控application。

yarn-client运行流程:

  • 对于部署方式是Client的情况,SparkSubmit的main函数中通过反射执行应用程序的main方法
  • 在应用程序的main方法中,创建SparkContext实例
  • 在创建SparkContext的实例过程中,通过如下语句创建Scheduler和Backend实例
  private var _schedulerBackend: SchedulerBackend = _
  private var _taskScheduler: TaskScheduler = _
  
  private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend

  private[spark] def taskScheduler: TaskScheduler = _taskScheduler
  private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = {
    _taskScheduler = ts
  }
  
  // 构造函数中初始化赋值
    // Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
    _schedulerBackend = sched
_taskScheduler = ts

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/SparkContext.scala

SparkContext初始化过程

在Yarn模式下,SparkContext初始化位置因--deploy-mode不同而不同:

yarn-cluster模式下:client会先申请向RM(Yarn Resource Manager)一个Container,来启动AM(ApplicationMaster)进程,而SparkContext运行在AM(ApplicationMaster)进程中;

yarn-client模式下  :在提交节点上执行SparkContext初始化,由client类(JavaMainApplication)调用。

/**
   * Create a task scheduler based on a given master URL.
   * Return a 2-tuple of the scheduler backend and the task scheduler.
   */
  private def createTaskScheduler(。。。): (SchedulerBackend, TaskScheduler) = {
    。。。
    master match {
      case "local" =>
        。。。
      case LOCAL_N_REGEX(threads) =>
        。。。
      case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
        。。。。
      case SPARK_REGEX(sparkUrl) =>
        。。。。
      case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
        。。。。
      case masterUrl =>
        val cm = getClusterManager(masterUrl) match {
          case Some(clusterMgr) => clusterMgr
          case None => throw new SparkException("Could not parse Master URL: '" + master + "'")
        }
        try {
          val scheduler = cm.createTaskScheduler(sc, masterUrl)
          val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler)
          cm.initialize(scheduler, backend)
          (backend, scheduler)
        } catch {
          case se: SparkException => throw se
          case NonFatal(e) =>
            throw new SparkException("External scheduler cannot be instantiated", e)
        }
    }
  }

  private def getClusterManager(url: String): Option[ExternalClusterManager] = {
    val loader = Utils.getContextOrSparkClassLoader
    val serviceLoaders =
      ServiceLoader.load(classOf[ExternalClusterManager], loader).asScala.filter(_.canCreate(url))
    if (serviceLoaders.size > 1) {
      throw new SparkException(
        s"Multiple external cluster managers registered for the url $url: $serviceLoaders")
    }
    serviceLoaders.headOption
  }  

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/SparkContext.scala

1)SparkContext#createTaskScheduler(。。。)

根据不同的资源管理方式cluster manager来创建不同的TaskScheduler,SchedulerBackend。

  1.1)SchedulerBackend与cluster manager资源管理器交互取得应用被分配的资源。

  1.2)TaskSheduler在不同的job之间调度,同时接收被分配的资源,之后由他来给每一个Task分配资源。

2)SparkContext#createTaskScheduler(。。。)

最后一个match case是对其他资源管理方式(除了local和standelone{spark://}外的mesos,yarn,kubernetes【外部资源管理器】的资源管理方式)的处理。

SparkContext#createTaskScheduler(。。。)#master match#case masterUrl下边调用了getClusterManager(masterUrl)方法,该方法返回对象是实现了ExternalClusterManager接口的YarnClusterManager类对象。

备注:实现了ExternalClusterManager接口的类还包含:

MesosClusterManager (https://github.com/apache/spark/blob/branch-2.4/resource-managers/mesos/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosClusterManager.scala

KubernetesClusterManager (https://github.com/apache/spark/blob/branch-2.4/resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterManager.scala

ExternalClusterManager接口定义:

private[spark] trait ExternalClusterManager {
  def canCreate(masterURL: String): Boolean

  def createTaskScheduler(sc: SparkContext, masterURL: String): TaskScheduler
  
  def createSchedulerBackend(sc: SparkContext,
      masterURL: String,
      scheduler: TaskScheduler): SchedulerBackend
      
  def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit
}

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/ExternalClusterManager.scala

ExternalClusterManager接口提供了4个方法:

-canCreate(masterURL: String):Boolean  检查此群集管理器实例是否可以为某个masterURL创建scheduler组件。

-createTaskScheduler(sc: SparkContext, masterURL: String):TaskScheduler  为给定的SparkContext创建TaskScheduler实例

-createSchedulerBackend(sc: SparkContext,masterURL: String,scheduler: TaskScheduler): SchedulerBackend  为给定的SparkContext和调度程序创建SchedulerBackend 。这是在使用“ExternalClusterManager.createTaskScheduler()”创建TaskScheduler后调用的。

-initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit  初始化TaskScheduler和SchedulerBackend,在创建调度程序组件之后调用。

YarnClusterManager类定义:

private[spark] class YarnClusterManager extends ExternalClusterManager {

  override def canCreate(masterURL: String): Boolean = {
    masterURL == "yarn"
  }

  override def createTaskScheduler(sc: SparkContext, masterURL: String): TaskScheduler = {
    sc.deployMode match {
      case "cluster" => new YarnClusterScheduler(sc)
      case "client" => new YarnScheduler(sc)
      case _ => throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn")
    }
  }

  override def createSchedulerBackend(sc: SparkContext,
      masterURL: String,
      scheduler: TaskScheduler): SchedulerBackend = {
    sc.deployMode match {
      case "cluster" =>
        new YarnClusterSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc)
      case "client" =>
        new YarnClientSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc)
      case  _ =>
        throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn")
    }
  }

  override def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit = {
    scheduler.asInstanceOf[TaskSchedulerImpl].initialize(backend)
  }
}

https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterManager.scala

YarnClusterManager#createTaskScheduler(...)

在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:

client时,返回YarnScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnScheduler.scala)实例对象;

cluster时,返回YarnClusterScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala)实例对象。

YarnClusterManager#createSchedulerBackend(...)

在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:

client时,返回YarnClientSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala)实例对象;

cluster时,返回YarnClusterSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterSchedulerBackend.scala)实例对象。

Yarn作业运行运行架构原理解析:

1、分析Spark on YARN的Cluster模式,从用户提交作业到作业运行结束整个运行期间的过程分析。

客户端进行操作

  •   1、根据yarnConf来初始化yarnClient,并启动yarnClient
  •   2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
  •   3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
  •   4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
  •   5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。

  当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。

提交到YARN集群,YARN操作

  •   1、运行ApplicationMaster的run方法;
  •   2、设置好相关的环境变量。
  •   3、创建amClient,并启动;
  •   4、在Spark UI启动之前设置Spark UI的AmIpFilter;
  •   5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
  •   6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;

  怎么知道SparkContext初始化完成?
  其实在5步骤中启动Application的过程中会初始化SparkContext,在初始化SparkContext的时候将会创建YarnClusterScheduler,在SparkContext初始化完成的时候,会调用YarnClusterScheduler类中的postStartHook方法,而该方法会通知ApplicationMaster已经初始化好了SparkContext

  •   7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
  •   8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。如果在启动Executeors的过程中失败的次数达到了maxNumExecutorFailures的次数,maxNumExecutorFailures的计算规则如下:
// Default to numExecutors * 2, with minimum of 3
private val maxNumExecutorFailures =sparkConf.getInt("spark.yarn.max.executor.failures",
sparkConf.getInt("spark.yarn.max.worker.failures", math.max(args.numExecutors *2,3)))

  那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。

  •   9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

2、Spark on YARN client 模式作业运行全过程分析

我们知道Spark on yarn有两种模式:yarn-cluster和yarn-client。这两种模式作业虽然都是在yarn上面运行,但是其中的运行方式很不一样,今天我就来谈谈Spark on YARN yarn-client模式作业从提交到运行的过程剖析。
  和yarn-cluster模式一样,整个程序也是通过spark-submit脚本提交的。但是yarn-client作业程序的运行不需要通过Client类来封装启动,而是直接通过反射机制调用作业的main函数。下面就来分析:

  •   1、通过SparkSubmit类的launch的函数直接调用作业的main函数(通过反射机制实现),如果是集群模式就会调用Client的main函数。
  •   2、而应用程序的main函数一定都有个SparkContent,并对其进行初始化;
  •   3、在SparkContent初始化中将会依次做如下的事情:设置相关的配置、注册MapOutputTracker、BlockManagerMaster、BlockManager,创建taskScheduler和dagScheduler;其中比较重要的是创建taskScheduler和dagScheduler。在创建taskScheduler的时候会根据我们传进来的master来选择Scheduler和SchedulerBackend。由于我们选择的是yarn-client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend,并将YarnClientSchedulerBackend的实例初始化YarnClientClusterScheduler,上面两个实例的获取都是通过反射机制实现的,YarnClientSchedulerBackend类是CoarseGrainedSchedulerBackend类的子类,YarnClientClusterScheduler是TaskSchedulerImpl的子类,仅仅重写了TaskSchedulerImpl中的getRackForHost方法。
  •   4、初始化完taskScheduler后,将创建dagScheduler,然后通过taskScheduler.start()启动taskScheduler,而在taskScheduler启动的过程中也会调用SchedulerBackend的start方法。在SchedulerBackend启动的过程中将会初始化一些参数,封装在ClientArguments中,并将封装好的ClientArguments传进Client类中,并client.runApp()方法获取Application ID。
  •   5、client.runApp里面的做是和前面客户端进行操作那节类似,不同的是在里面启动是ExecutorLauncher(yarn-cluster模式启动的是ApplicationMaster)。
  •   6、在ExecutorLauncher里面会初始化并启动amClient,然后向ApplicationMaster注册该Application。注册完之后将会等待driver的启动,当driver启动完之后,会创建一个MonitorActor对象用于和CoarseGrainedSchedulerBackend进行通信(只有事件AddWebUIFilter他们之间才通信,Task的运行状况不是通过它和CoarseGrainedSchedulerBackend通信的)。然后就是设置addAmIpFilter,当作业完成的时候,ExecutorLauncher将通过amClient设置Application的状态为FinalApplicationStatus.SUCCEEDED。
  •   7、分配Executors,这里面的分配逻辑和yarn-cluster里面类似,就不再说了。
  •   8、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。
  •   9、在作业运行的时候,YarnClientSchedulerBackend会每隔1秒通过client获取到作业的运行状况,并打印出相应的运行信息,当Application的状态是FINISHED、FAILED和KILLED中的一种,那么程序将退出等待。
  •   10、最后有个线程会再次确认Application的状态,当Application的状态是FINISHED、FAILED和KILLED中的一种,程序就运行完成,并停止SparkContext。整个过程就结束了。

 

YARN-Cluster运行架构原理

在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:

  • 1.第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;
  • 2.第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成

说明如下:

  • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等;
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化;
  • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束;
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等;
  • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
  • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己;

跟踪CoarseGrainedExecutorBackend启动脚本:

  1 [root@CDH-143 bin]$ yarn applicationattempt -list application_1559203334026_0010
  2 19/05/31 09:36:10 INFO client.RMProxy: Connecting to ResourceManager at CDH-143/10.132.52.143:8032
  3 Total number of application attempts :1
  4          ApplicationAttempt-Id                 State                        AM-Container-Id                            Tracking-URL
  5 appattempt_1559203334026_0010_000001                 RUNNING    container_1559203334026_0010_01_000001  http://CDH-143:8088/proxy/application_1559203334026_0010/
  6 
  7 [root@CDH-143 bin]$ yarn container -list appattempt_1559203334026_0010_000001
  8 19/05/31 09:36:51 INFO client.RMProxy: Connecting to ResourceManager at CDH-143/10.132.52.143:8032
  9 Total number of containers :16
 10                   Container-Id            Start Time             Finish Time                   State                    Host                                LOG-URL
 11 container_1559203334026_0010_01_000015  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000015/dx
 12 container_1559203334026_0010_01_000016  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000016/dx
 13 container_1559203334026_0010_01_000003  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000003/dx
 14 container_1559203334026_0010_01_000004  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000004/dx
 15 container_1559203334026_0010_01_000005  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000005/dx
 16 container_1559203334026_0010_01_000006  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000006/dx
 17 container_1559203334026_0010_01_000001  Thu May 30 19:52:06 +0800 2019                   N/A                 RUNNING            CDH-142:8041    http://CDH-142:8042/node/containerlogs/container_1559203334026_0010_01_000001/dx
 18 container_1559203334026_0010_01_000002  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000002/dx
 19 container_1559203334026_0010_01_000011  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000011/dx
 20 container_1559203334026_0010_01_000012  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000012/dx
 21 container_1559203334026_0010_01_000013  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000013/dx
 22 container_1559203334026_0010_01_000014  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000014/dx
 23 container_1559203334026_0010_01_000007  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000007/dx
 24 container_1559203334026_0010_01_000008  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000008/dx
 25 container_1559203334026_0010_01_000009  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-141:8041    http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000009/dx
 26 container_1559203334026_0010_01_000010  Thu May 30 19:52:19 +0800 2019                   N/A                 RUNNING            CDH-146:8041    http://CDH-146:8042/node/containerlogs/container_1559203334026_0010_01_000010/dx
 27 
 28 [root@CDH-141 ~]$ ps axu | grep container_1559203334026_0010_01_000003
 29 yarn     30557  0.0  0.0 113144  1496 ?        S    May30   0:00 bash 
 30     /data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/default_container_executor.sh
 31 yarn     30569  0.0  0.0 113280  1520 ?        Ss   May30   0:00 /bin/bash -c /usr/java/jdk1.8.0_171-amd64/bin/java 
 32     -server -Xmx6144m 
 33     -Djava.io.tmpdir=/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/tmp 
 34     '-Dspark.driver.port=50365' 
 35     '-Dspark.network.timeout=10000000' 
 36     '-Dspark.port.maxRetries=32' 
 37     -Dspark.yarn.app.container.log.dir=/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003 
 38     -XX:OnOutOfMemoryError='kill %p'
 39     org.apache.spark.executor.CoarseGrainedExecutorBackend 
 40     --driver-url spark://CoarseGrainedScheduler@CDH-143:50365 
 41     --executor-id 2 
 42     --hostname CDH-141 
 43     --cores 2 
 44     --app-id application_1559203334026_0010 
 45     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/__app__.jar 
 46     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx-domain-perf-3.0.0.jar    
 47     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx-common-3.0.0.jar 
 48     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/spark-sql-kafka-0-10_2.11-2.4.0.jar 
 49     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/spark-avro_2.11-3.2.0.jar 
 50     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/shc-core-1.1.2-2.2-s_2.11-SNAPSHOT.jar 
 51     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/rocksdbjni-5.17.2.jar 
 52     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/kafka-clients-0.10.0.1.jar 
 53     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/elasticsearch-spark-20_2.11-6.4.1.jar 
 54     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx_Spark_State_Store_Plugin-1.0-SNAPSHOT.jar 
 55     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/bijection-core_2.11-0.9.5.jar 
 56     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/bijection-avro_2.11-0.9.5.jar 
 57     1>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stdout 
 58     2>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stderr
 59 yarn     30700  161  5.3 8738480 7032916 ?     Sl   May30 1392:01 /usr/java/jdk1.8.0_171-amd64/bin/java 
 60     -server -Xmx6144m 
 61     -Djava.io.tmpdir=/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/tmp 
 62     -Dspark.driver.port=50365 
 63     -Dspark.network.timeout=10000000 
 64     -Dspark.port.maxRetries=32 
 65     -Dspark.yarn.app.container.log.dir=/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003 
 66     -XX:OnOutOfMemoryError=kill %p 
 67     org.apache.spark.executor.CoarseGrainedExecutorBackend 
 68     --driver-url spark://CoarseGrainedScheduler@CDH-143:50365 
 69     --executor-id 2 
 70     --hostname CDH-141 
 71     --cores 2 
 72     --app-id application_1559203334026_0010 
 73     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/__app__.jar 
 74     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx-domain-perf-3.0.0.jar 
 75     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx-common-3.0.0.jar 
 76     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/spark-sql-kafka-0-10_2.11-2.4.0.jar 
 77     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/spark-avro_2.11-3.2.0.jar 
 78     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/shc-core-1.1.2-2.2-s_2.11-SNAPSHOT.jar 
 79     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/rocksdbjni-5.17.2.jar 
 80     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/kafka-clients-0.10.0.1.jar 
 81     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/elasticsearch-spark-20_2.11-6.4.1.jar 
 82     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/dx_Spark_State_Store_Plugin-1.0-SNAPSHOT.jar 
 83     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/bijection-core_2.11-0.9.5.jar 
 84     --user-class-path file:/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/bijection-avro_2.11-0.9.5.jar
 85 dx     37775  0.0  0.0 112780   952 pts/1    S+   10:14   0:00 grep --color=auto container_1559203334026_0010_01_000003
 86 
 87 
 88 [root@CDH-141 dx]# more /data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/default_container_executor.sh
 89 #!/bin/bash
 90 /bin/bash "/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/default_container_executor_session.sh"
 91 rc=$?
 92 echo $rc > "/data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid.exitcode.tmp"
 93 /bin/mv -f "/data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid.exitcode.tmp" 
 94 "/data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid.exitcode"
 95 exit $rc
 96 
 97 [root@CDH-141 dx]# more /data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/default_container_executor_session.sh
 98 #!/bin/bash
 99 
100 echo $$ > /data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid.tmp
101 /bin/mv -f /data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid.tmp 
102 /data6/yarn/nm/nmPrivate/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_1559203334026_0010_01_000003.pid
103 exec setsid /bin/bash "/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/launch_container.sh"
104 
105 
106 [root@CDH-141 dx]# more /data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/launch_container.sh
107 #!/bin/bash
108 
109 export SPARK_YARN_STAGING_DIR="hdfs://CDH-143:8020/user/dx/.sparkStaging/application_1559203334026_0010"
110 export HADOOP_CONF_DIR="/run/cloudera-scm-agent/process/2037-yarn-NODEMANAGER"
111 export JAVA_HOME="/usr/java/jdk1.8.0_171-amd64"
112 export SPARK_LOG_URL_STDOUT="http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000003/dx/stdout?start=-4096"
113 export NM_HOST="CDH-141"
114 export HADOOP_HDFS_HOME="/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop-hdfs"
115 export LOGNAME="dx"
116 export JVM_PID="$$"
117 export PWD="/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003"
118 export HADOOP_COMMON_HOME="/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop"
119 export LOCAL_DIRS="/data1/yarn/nm/usercache/dx/appcache/application_1559203334026_0010,/data2/yarn/nm/usercache/dx/appcache/application_1559203334026_0010,/data3/ya
120 rn/nm/usercache/dx/appcache/application_1559203334026_0010,/data4/yarn/nm/usercache/dx/appcache/application_1559203334026_0010,/data5/yarn/nm/usercache/dx/appcach
121 e/application_1559203334026_0010,/data6/yarn/nm/usercache/dx/appcache/application_1559203334026_0010,/opt/yarn/nm/usercache/dx/appcache/application_1559203334026_00
122 10"
123 export NM_HTTP_PORT="8042"
124 export SPARK_DIST_CLASSPATH="/opt/cloudera/parcels/SPARK2-2.4.0.cloudera1-1.cdh5.13.3.p0.1007356/lib/spark2/kafka-0.10/*:/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/jars/xmlenc-0.52
125 .jar:/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/jars/*.jar:/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop/LICENSE.txt:/op
126 t/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop/NOTICE.txt"
127 export LOG_DIRS="/data1/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003,/data2/yarn/container-logs/application_1559203334026_0
128 010/container_1559203334026_0010_01_000003,/data3/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003,/data4/yarn/container-logs/a
129 pplication_1559203334026_0010/container_1559203334026_0010_01_000003,/data5/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003,/d
130 ata6/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003,/opt/yarn/container-logs/application_1559203334026_0010/container_1559203
131 334026_0010_01_000003"
132 export NM_AUX_SERVICE_mapreduce_shuffle="AAA0+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=
133 "
134 export NM_PORT="8041"
135 export USER="dx"
136 export HADOOP_YARN_HOME="/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop-yarn"
137 export CLASSPATH="$PWD:$PWD/__spark_conf__:$PWD/__spark_libs__/*:$HADOOP_CLIENT_CONF_DIR:$HADOOP_CONF_DIR:$HADOOP_COMMON_HOME/*:$HADOOP_COMMON_HOME/lib/*:$HADOOP_HDFS_H
138 OME/*:$HADOOP_HDFS_HOME/lib/*:$HADOOP_YARN_HOME/*:$HADOOP_YARN_HOME/lib/*:$HADOOP_MAPRED_HOME/*:$HADOOP_MAPRED_HOME/lib/*:$MR2_CLASSPATH:/opt/cloudera/parcels/SPARK2-2.
139 4.0.cloudera1-1.cdh5.13.3.p0.1007356/lib/spark2/kafka-0.10/*:/opt/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/jars/*.jar
140 OTICE.txt:$PWD/__spark_conf__/__hadoop_conf__"
141 export HADOOP_TOKEN_FILE_LOCATION="/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/container_tokens"
142 export NM_AUX_SERVICE_spark_shuffle=""
143 export SPARK_USER="dx"
144 export SPARK_LOG_URL_STDERR="http://CDH-141:8042/node/containerlogs/container_1559203334026_0010_01_000003/dx/stderr?start=-4096"
145 export HOME="/home/"
146 export CONTAINER_ID="container_1559203334026_0010_01_000003"
147 export MALLOC_ARENA_MAX="4"
148 ln -sf "/data5/yarn/nm/usercache/dx/filecache/1427931/kafka-clients-0.10.0.1.jar" "kafka-clients-0.10.0.1.jar"
149 hadoop_shell_errorcode=$?
150 if [ $hadoop_shell_errorcode -ne 0 ]
151 then
152   exit $hadoop_shell_errorcode
153 fi
154 ln -sf "/data6/yarn/nm/usercache/dx/filecache/1427932/elasticsearch-spark-20_2.11-6.4.1.jar" "elasticsearch-spark-20_2.11-6.4.1.jar"
155 hadoop_shell_errorcode=$?
156 if [ $hadoop_shell_errorcode -ne 0 ]
157 then
158   exit $hadoop_shell_errorcode
159 fi
160 ln -sf "/opt/yarn/nm/usercache/dx/filecache/1427933/__spark_libs__3031377885391114478.zip" "__spark_libs__"
161 hadoop_shell_errorcode=$?
162 if [ $hadoop_shell_errorcode -ne 0 ]
163 then
164   exit $hadoop_shell_errorcode
165 fi
166 ln -sf "/data6/yarn/nm/usercache/dx/filecache/1427925/dx_Spark_State_Store_Plugin-1.0-SNAPSHOT.jar" "dx_Spark_State_Store_Plugin-1.0-SNAPSHOT.jar"
167 hadoop_shell_errorcode=$?
168 if [ $hadoop_shell_errorcode -ne 0 ]
169 then
170   exit $hadoop_shell_errorcode
171 fi
172 ln -sf "/data3/yarn/nm/usercache/dx/filecache/1427929/spark-sql-kafka-0-10_2.11-2.4.0.jar" "spark-sql-kafka-0-10_2.11-2.4.0.jar"
173 hadoop_shell_errorcode=$?
174 if [ $hadoop_shell_errorcode -ne 0 ]
175 then
176   exit $hadoop_shell_errorcode
177 fi
178 ln -sf "/data4/yarn/nm/usercache/dx/filecache/1427923/streaming-common-3.0.0.jar" "streaming-common-3.0.0.jar"
179 hadoop_shell_errorcode=$?
180 if [ $hadoop_shell_errorcode -ne 0 ]
181 then
182   exit $hadoop_shell_errorcode
183 fi
184 ln -sf "/data1/yarn/nm/usercache/dx/filecache/1427934/spark-avro_2.11-3.2.0.jar" "spark-avro_2.11-3.2.0.jar"
185 hadoop_shell_errorcode=$?
186 if [ $hadoop_shell_errorcode -ne 0 ]
187 then
188   exit $hadoop_shell_errorcode
189 fi
190 ln -sf "/data2/yarn/nm/usercache/dx/filecache/1427928/bijection-avro_2.11-0.9.5.jar" "bijection-avro_2.11-0.9.5.jar"
191 hadoop_shell_errorcode=$?
192 if [ $hadoop_shell_errorcode -ne 0 ]
193 then
194   exit $hadoop_shell_errorcode
195 fi
196 ln -sf "/data2/yarn/nm/usercache/dx/filecache/1427935/shc-core-1.1.2-2.2-s_2.11-SNAPSHOT.jar" "shc-core-1.1.2-2.2-s_2.11-SNAPSHOT.jar"
197 hadoop_shell_errorcode=$?
198 if [ $hadoop_shell_errorcode -ne 0 ]
199 then
200   exit $hadoop_shell_errorcode
201 fi
202 ln -sf "/data1/yarn/nm/usercache/dx/filecache/1427927/bijection-core_2.11-0.9.5.jar" "bijection-core_2.11-0.9.5.jar"
203 hadoop_shell_errorcode=$?
204 if [ $hadoop_shell_errorcode -ne 0 ]
205 then
206   exit $hadoop_shell_errorcode
207 fi
208 ln -sf "/data5/yarn/nm/usercache/dx/filecache/1427924/rocksdbjni-5.17.2.jar" "rocksdbjni-5.17.2.jar"
209 hadoop_shell_errorcode=$?
210 if [ $hadoop_shell_errorcode -ne 0 ]
211 then
212   exit $hadoop_shell_errorcode
213 fi
214 ln -sf "/opt/yarn/nm/usercache/dx/filecache/1427926/__spark_conf__.zip" "__spark_conf__"
215 hadoop_shell_errorcode=$?
216 if [ $hadoop_shell_errorcode -ne 0 ]
217 then
218   exit $hadoop_shell_errorcode
219 fi
220 ln -sf "/data4/yarn/nm/usercache/dx/filecache/1427930/dx-domain-perf-3.0.0.jar" "dx-domain-perf-3.0.0.jar"
221 hadoop_shell_errorcode=$?
222 if [ $hadoop_shell_errorcode -ne 0 ]
223 then
224   exit $hadoop_shell_errorcode
225 fi
226 exec /bin/bash -c "$JAVA_HOME/bin/java -server -Xmx6144m -Djava.io.tmpdir=$PWD/tmp 
227 '-Dspark.driver.port=50365' 
228 '-Dspark.network.timeout=10000000' 
229 '-Dspark.port.maxRetries=32' 
230 -Dspark.yarn.app.container.log.dir=/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003 
231 -XX:OnOutOfMemoryError='kill %p' 
232 org.apache.spark.executor.CoarseGrainedExecutorBackend 
233 --driver-url spark://CoarseGrainedScheduler@CDH-143:50365 
234 --executor-id 2 
235 --hostname CDH-141 
236 --cores 2 
237 --app-id application_1559203334026_0010 
238 --user-class-path file:$PWD/__app__.jar 
239 --user-class-path file:$PWD/dx-domain-perf-3.0.0.jar 
240 --user-class-path file:$PWD/streaming-common-3.0.0.jar 
241 --user-class-path file:$PWD/spark-sql-kafka-0-10_2.11-2.4.0.jar 
242 --user-class-path file:$PWD/spark-avro_2.11-3.2.0.jar 
243 --user-class-path file:$PWD/shc-core-1.1.2-2.2-s_2.11-SNAPSHOT.jar 
244 --user-class-path file:$PWD/rocksdbjni-5.17.2.jar 
245 --user-class-path file:$PWD/kafka-clients-0.10.0.1.jar 
246 --user-class-path file:$PWD/elasticsearch-spark-20_2.11-6.4.1.jar 
247 --user-class-path file:$PWD/dx_Spark_State_Store_Plugin-1.0-SNAPSHOT.jar 
248 --user-class-path file:$PWD/bijection-core_2.11-0.9.5.jar 
249 --user-class-path file:$PWD/bijection-avro_2.11-0.9.5.jar 
250 1>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stdout 
251 2>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stderr"
252 hadoop_shell_errorcode=$?
253 if [ $hadoop_shell_errorcode -ne 0 ]
254 then
255   exit $hadoop_shell_errorcode
256 fi
257 [root@CDH-141 dx]# 
View Code

YARN-Client运行架构原理

说明如下:

  • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterSchedulerYarnScheduler和YarnClientSchedulerBackend;
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派;
  • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container);
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task;
  • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
  • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己。

Client模式 vs Cluster模式

  • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别;
  • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业;
  • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开;

提交涉及重要类:

JavaMainApplication

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkApplication.scala

StandaloneAppClient

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/client/StandaloneAppClient.scala

SparkSubmitArguments

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala

ApplicationMaster

https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala

ClientApp

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/deploy/Client.scala

LauncherBackend

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/launcher/LauncherBackend.scala

YarnClient

https://github.com/apache/hadoop/blob/branch-2.7.0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-client/src/main/java/org/apache/hadoop/yarn/client/api/YarnClient.java

YarnClientImpl

https://github.com/apache/hadoop/blob/branch-2.7.0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-client/src/main/java/org/apache/hadoop/yarn/client/api/impl/YarnClientImpl.java

ApplicationClientProtocol

https://github.com/apache/hadoop/blob/branch-2.7.0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-api/src/main/java/org/apache/hadoop/yarn/api/ApplicationClientProtocol.java

ApplicationClientProtocolPBClientImpl

https://github.com/apache/hadoop/blob/branch-2.7.0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-common/src/main/java/org/apache/hadoop/yarn/api/impl/pb/client/ApplicationClientProtocolPBClientImpl.java

参考文章:

Yarn源码剖析(三)--- ApplicationMaster的启动

https://blog.csdn.net/weixin_42642341/article/details/81636135

Yarn源码剖析(二) --- spark-submit

https://blog.csdn.net/weixin_42642341/article/details/81544101
Spark On YARN启动流程源码分析

https://blog.csdn.net/CRISPY_RICE/article/details/71255113

【Spark三十六】Spark On Yarn之yarn-client方式部署

https://bit1129.iteye.com/blog/2182018

白话Spark——DAGScheduler,TaskScheduler,SchedulerBackend模块实现机制

https://blog.csdn.net/handoking/article/details/81122877

 

posted @ 2019-05-27 22:55  cctext  阅读(5038)  评论(0编辑  收藏  举报