摘要:
一、.选择使用什么数据,有哪些字段,多大数据量。 us-counties美新冠数据;字段有日期(date),县(county), 国家、州(state),确诊情况(cases),死亡人数(deaths); 二、准备分析哪些问题?(8个以上) 1、统计美国某个县每天的确诊病例和死亡病例 2、统计美国确 阅读全文
摘要:
1.安装启动检查Mysql服务。 2.spark 连接mysql驱动程序。 –cp /usr/local/hive/lib/mysql-connector-java-5.1.40-bin.jar /usr/local/spark/jars netstat -tunlp (3306) 3.启动 Mys 阅读全文
摘要:
1.生成“表头” 2.生成“表中的记录” 3.把“表头”和“表中的记录”拼装在一起 用DataFrame的操作或SQL语句完成以下数据分析要求,并和用RDD操作的实现进行对比: 每个分数+5分。 df_scs.select('name','cource',df_scs['score']+5).sho 阅读全文
摘要:
1.pandas df 与 spark df的相互转换 df_s=spark.createDataFrame(df_p) df_p=df_s.toPandas() 2. Spark与Pandas中DataFrame对比 http://www.lining0806.com/spark%E4%B8%8E 阅读全文
摘要:
1.Spark SQL出现的 原因是什么? 尽管数据库的事务和查询机制较好胡满足胃各类商业公司胡业务数据管理需求,但关系数据库在大数据时代不能满足各类新增的用户需求,用户需要从不同胡数据源执行各种操作,用户需要执行高级分析,比如机器学习和图像处理,而spark sql的出现填补了这个鸿沟,spakr 阅读全文
摘要:
1.读文本文件生成RDD lines lines=sc.textFile('file:///home/hadoop/word.txt') 2.将一行一行的文本分割成单词 words words=lines.flatMap(lambda line:line.split()) 3.全部转换为小写 wor 阅读全文
摘要:
一、词频统计: 1.读文本文件生成RDD lines 2.将一行一行的文本分割成单词 words flatmap() 3.全部转换为小写 lower() 4.去掉长度小于3的单词 filter() 5.去掉停用词 6.转换成键值对 map() 7.统计词频 reduceByKey() 二、学生课程分 阅读全文
摘要:
一、filter,map,flatmap练习: 1.读文本文件生成RDD lines 2.将一行一行的文本分割成单词 words 3.全部转换为小写 4.去掉长度小于3的单词 5.去掉停用词 二、groupByKey练习 6.练习一的生成单词键值对 7.对单词进行分组 8.查看分组结果 学生科目成绩 阅读全文
摘要:
1. 准备文本文件从文件创建RDD lines=sc.textFile()筛选出含某个单词的行 lines.filter()lambda 参数:条件表达式 2. 生成单词的列表从列表创建RDD words=sc.parallelize()筛选出长度大于2 的单词 words.filter() 3. 阅读全文
摘要:
1. 阐述Hadoop生态系统中,HDFS, MapReduce, Yarn, Hbase及Spark的相互关系,为什么要引入Yarn和Spark。 Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。 Hadoop的核心是HDFS和MapReduce,hadoo 阅读全文