Light oj 1138 - Trailing Zeroes (III) 【二分查找 && N!中末尾连续0的个数】
1138 - Trailing Zeroes (III)
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input |
Output for Sample Input |
3 1 2 5 |
Case 1: 5 Case 2: 10 Case 3: impossible |
题意:给你一个数Q。代表N!中末尾连续0的个数。让你求出最小的N。
求N!中尾连续0的个数:
LL change(LL x){ LL ans = 0; while(x){ ans += x / 5; x /= 5; } return ans; }
AC代码
#include <stdio.h> #include <string.h> #include <queue> #include <algorithm> #define INF 0x3f3f3f3f #define LL long long LL change(LL x){ LL ans = 0; while(x){ ans += x / 5; x /= 5; } return ans; } int main (){ int T, n; int k = 1; scanf("%d", &T); while(T--){ scanf("%d", &n); LL l = 0, r = 100000000 * 5 + 10; LL mid, ans; while(r > l){ mid = (l + r) / 2; if(change(mid) >= n){ ans = mid; r = mid; } else l = mid + 1; } printf("Case %d: ", k++); if(change(ans) == n) printf("%lld\n", ans); else printf("impossible\n"); } return 0; }