Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

3、Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2

http://blog.csdn.net/sunbow0

第三章Convolution Neural Network (卷积神经网络)

2基础及源代码解析

2.1 Convolution Neural Network卷积神经网络基础知识

1)基础知识:

自行google,百度。基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确;

能把细节说清楚了讲明确了。能够參照以下2个文章,前提条件是你得先要有基础性的了解。

2)重点參照:

http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html

http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html

2.2 Deep Learning CNN源代码解析

2.2.1 CNN代码结构

CNN源代码主要包含:CNN,CNNModel两个类,源代码结构例如以下:


CNN结构:



CNNModel结构:


2.2.2 CNN训练过程


2.2.3 CNN解析

(1) CNNLayers

/**

 * types:网络层类别

 * outputmaps:特征map数量

 * kernelsize:卷积核k大小

 * k: 卷积核

 * b: 偏置

 * dk: 卷积核的偏导

 * db: 偏置的偏导

 * scale: pooling大小

 */

caseclassCNNLayers(

 types:String,

 outputmaps:Double,

 kernelsize:Double,

 scale:Double,

 k:Array[Array[BDM[Double]]],

 b: Array[Double],

 dk:Array[Array[BDM[Double]]],

db:Array[Double])extends Serializable

CNNLayers:自己定义数据类型。存储网络每一层的參数信息。

(2) CnnSetup

卷积神经网络參数初始化。依据參数逐层构建CNN网络。

/** 卷积神经网络层參数初始化. */

 defCnnSetup: (Array[CNNLayers], BDM[Double], BDM[Double], Double) = {

   varinputmaps1=1.0

   varmapsize1=mapsize

   varconfinit= ArrayBuffer[CNNLayers]()

   for(l <-0 tolayer -1) {// layer

     valtype1=types(l)

     valoutputmap1=outputmaps(l)

     valkernelsize1=kernelsize(l)

     valscale1=scale(l)

     vallayersconf=if(type1=="s"){//每一层參数初始化

        mapsize1 =mapsize1 /scale1

        valb1 = Array.fill(inputmaps1.toInt)(0.0)

        valki = Array(Array(BDM.zeros[Double](1,1)))

        new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki,b1,ki,b1)

     } elseif(type1=="c"){

        mapsize1 =mapsize1 -kernelsize1+1.0

        valfan_out =outputmap1* math.pow(kernelsize1,2)

        valfan_in =inputmaps1* math.pow(kernelsize1,2)

        valki = ArrayBuffer[Array[BDM[Double]]]()

        for (i <-0toinputmaps1.toInt-1) {// input map

          valkj = ArrayBuffer[BDM[Double]]()

          for (j <-0tooutputmap1.toInt-1) {// output map         

            valkk = (BDM.rand[Double](kernelsize1.toInt,kernelsize1.toInt)-0.5)*2.0* sqrt(6.0/ (fan_in+fan_out))

            kj +=kk

          }

          ki +=kj.toArray

        }

        valb1 = Array.fill(outputmap1.toInt)(0.0)

        inputmaps1 =outputmap1

        new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki.toArray,b1,ki.toArray,b1)

     } else{

        valki = Array(Array(BDM.zeros[Double](1,1)))

        valb1 = Array(0.0)

        new CNNLayers(type1,outputmap1,kernelsize1,scale1,ki,b1,ki,b1)

     }

     confinit+=layersconf

   }

   valfvnum=mapsize1(0,0) * mapsize1(0,1) *inputmaps1

   valffb= BDM.zeros[Double](onum,1)

   valffW= (BDM.rand[Double](onum,fvnum.toInt)-0.5)*2.0* sqrt(6.0/ (onum+fvnum))

   (confinit.toArray,ffb,ffW,alpha)

 }

(3) expand

克罗内克积方法。

 /**

  * 克罗内克积

  *

  */

 defexpand(a: BDM[Double],s: Array[Int]): BDM[Double]= {

   // val a = BDM((1.0, 2.0), (3.0,4.0), (5.0, 6.0))

   // val s = Array(3, 2)

   valsa = Array(a.rows, a.cols)

   vartt =new Array[Array[Int]](sa.length)

   for(ii <-sa.length -1 to0 by -1) {

     varh =BDV.zeros[Int](sa(ii) * s(ii))

     h(0 tosa(ii) * s(ii) -1 by s(ii)) :=1

     tt(ii) = Accumulate(h).data

   }

   varb = BDM.zeros[Double](tt(0).length,tt(1).length)

   for(j1 <-0 tob.rows -1) {

     for(j2 <-0 tob.cols -1) {

        b(j1,j2) = a(tt(0)(j1) -1, tt(1)(j2) -1)

     }

   }

   b

 }

(4) convn

卷积计算方法。

 /**

  * convn卷积计算

  */

 defconvn(m0: BDM[Double],k0: BDM[Double],shape: String): BDM[Double]= {

   //val m0 = BDM((1.0, 1.0, 1.0, 1.0),(0.0, 0.0, 1.0, 1.0), (0.0, 1.0, 1.0, 0.0), (0.0, 1.0, 1.0, 0.0))

   //val k0 = BDM((1.0, 1.0), (0.0,1.0))

   //val m0 = BDM((1.0, 1.0, 1.0),(1.0, 1.0, 1.0), (1.0, 1.0, 1.0))

   //val k0 = BDM((1.0, 2.0, 3.0),(4.0, 5.0, 6.0), (7.0, 8.0, 9.0))   

   valout1= shapematch{

     case"valid"=>

        valm1 = m0

        valk1 = k0.t

        valrow1 =m1.rows -k1.rows +1

        valcol1 =m1.cols -k1.cols +1

        varm2 = BDM.zeros[Double](row1,col1)

        for (i <-0torow1-1) {

          for (j <-0tocol1-1) {

            valr1 =i

            valr2 =r1 +k1.rows -1

            valc1 =j

            valc2 =c1 +k1.cols -1

            valmi =m1(r1 tor2,c1 toc2)

            m2(i,j) = (mi :*k1).sum

          }

        }

        m2

     case"full"=>

        varm1 = BDM.zeros[Double](m0.rows +2 * (k0.rows -1), m0.cols +2 * (k0.cols -1))

        for (i <-0to m0.rows-1) {

          for (j <-0to m0.cols-1) {

            m1((k0.rows -1) +i, (k0.cols -1) +j) = m0(i,j)

          }

        }

        valk1 = Rot90(Rot90(k0))

        valrow1 =m1.rows -k1.rows +1

        valcol1 =m1.cols -k1.cols +1

        varm2 = BDM.zeros[Double](row1,col1)

        for (i <-0torow1-1) {

          for (j <-0tocol1-1) {

            valr1 =i

            valr2 =r1 +k1.rows -1

            valc1 =j

            valc2 =c1 +k1.cols -1

            valmi =m1(r1 tor2,c1 toc2)

            m2(i,j) = (mi :*k1).sum

          }

        }

        m2

   }

   out1

 }

(5) CNNtrain

对神经网络进行训练。

输入參数:train_d 训练RDD数据。opts训练參数。

输出:CNNModel,训练模型。

/**

  * 执行卷积神经网络算法.

  */

 defCNNtrain(train_d: RDD[(BDM[Double], BDM[Double])], opts: Array[Double]):CNNModel = {

   valsc =train_d.sparkContext

   varinitStartTime= System.currentTimeMillis()

   varinitEndTime= System.currentTimeMillis()

   // 參数初始化配置

   var(cnn_layers,cnn_ffb,cnn_ffW,cnn_alpha)= CnnSetup

   // 样本数据划分:训练数据、交叉检验数据

   valvalidation= opts(2)

   valsplitW1= Array(1.0-validation,validation)

   valtrain_split1= train_d.randomSplit(splitW1, System.nanoTime())

   valtrain_t=train_split1(0)

   valtrain_v=train_split1(1)

   // m:训练样本的数量

   valm =train_t.count

   // 计算batch的数量

   valbatchsize= opts(0).toInt

   valnumepochs= opts(1).toInt

   valnumbatches= (m /batchsize).toInt

   varrL = Array.fill(numepochs *numbatches.toInt)(0.0)

   varn =0

   // numepochs是循环的次数

   for(i <-1 tonumepochs) {

     initStartTime= System.currentTimeMillis()

     valsplitW2= Array.fill(numbatches)(1.0 /numbatches)

     // 依据分组权重。随机划分每组样本数据 

     for(l <-1 tonumbatches) {

        // 权重

        valbc_cnn_layers =sc.broadcast(cnn_layers)

        valbc_cnn_ffb =sc.broadcast(cnn_ffb)

        valbc_cnn_ffW =sc.broadcast(cnn_ffW)

 

        // 样本划分

        valtrain_split2 =train_t.randomSplit(splitW2, System.nanoTime())

        valbatch_xy1 =train_split2(l -1)

 

        // CNNff是进行前向传播

        // net =cnnff(net, batch_x);

        valtrain_cnnff = CNN.CNNff(batch_xy1,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)

 

        // CNNbp是后向传播

        // net =cnnbp(net, batch_y);

        valtrain_cnnbp = CNN.CNNbp(train_cnnff,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)

 

        // 权重更新

        //  net =cnnapplygrads(net,opts);

        valtrain_nnapplygrads = CNN.CNNapplygrads(train_cnnbp,bc_cnn_ffb,bc_cnn_ffW,cnn_alpha)

        cnn_ffW =train_nnapplygrads._1

        cnn_ffb =train_nnapplygrads._2

        cnn_layers =train_nnapplygrads._3

 

        // error and loss

        // 输出误差计算

        // net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);

        valrdd_loss1 =train_cnnbp._1.map(f => f._5)

        val (loss2,counte)=rdd_loss1.treeAggregate((0.0,0L))(

          seqOp = (c, v) => {

            // c: (e, count), v: (m)

            vale1 = c._1

            vale2 = (v :* v).sum

            valesum =e1 +e2

            (esum, c._2 +1)

          },

          combOp = (c1, c2) => {

            // c: (e, count)

            vale1 = c1._1

            vale2 = c2._1

            valesum =e1 +e2

            (esum, c1._2 + c2._2)

          })

        valLoss = (loss2/counte.toDouble)*0.5

        if (n ==0) {

          rL(n) =Loss

        } else {

          rL(n) =0.09*rL(n -1) +0.01 *Loss

        }

        n =n +1

     }

     initEndTime= System.currentTimeMillis()

     // 打印输出结果

     printf("epoch: numepochs = %d , Took = %dseconds; batch train mse = %f.\n",i, scala.math.ceil((initEndTime -initStartTime).toDouble /1000).toLong,rL(n -1))

   }

   // 计算训练误差及交叉检验误差

   // Full-batch trainmse

   varloss_train_e=0.0

   varloss_val_e=0.0

   loss_train_e= CNN.CNNeval(train_t,sc.broadcast(cnn_layers),sc.broadcast(cnn_ffb),sc.broadcast(cnn_ffW))

   if(validation>0)loss_val_e = CNN.CNNeval(train_v,sc.broadcast(cnn_layers),sc.broadcast(cnn_ffb),sc.broadcast(cnn_ffW))

   printf("epoch: Full-batch train mse = %f, valmse = %f.\n",loss_train_e,loss_val_e)

   newCNNModel(cnn_layers,cnn_ffW,cnn_ffb)

(6) CNNff

前向传播计算,计算每层输出。从输入层->隐含层->输出层。计算每一层每个节点的输出值。

输入參数:

batch_xy1 样本数据

bc_cnn_layers 每层的參数

bc_cnn_ffb 偏置參数

bc_cnn_ffW 权重參数

输出:

每一层的计算结果。

 

 /**

  * cnnff是进行前向传播

  * 计算神经网络中的每一个节点的输出值;

  */

 defCNNff(

   batch_xy1: RDD[(BDM[Double], BDM[Double])],

   bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],

   bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],

   bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]):RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double])] = {

   // 1:a(1)=[x]

   valtrain_data1= batch_xy1.map { f =>

     vallable= f._1

     valfeatures= f._2

     valnna1= Array(features)

     valnna= ArrayBuffer[Array[BDM[Double]]]()

     nna+=nna1

     (lable,nna)

   }

   // 2n-1层计算

   valtrain_data2=train_data1.map{ f =>

     vallable= f._1

     valnn_a= f._2

     varinputmaps1=1.0

     valn =bc_cnn_layers.value.length

     // for each layer

     for(l <-1 ton -1) {

        valtype1 = bc_cnn_layers.value(l).types

        valoutputmap1 = bc_cnn_layers.value(l).outputmaps

        valkernelsize1 = bc_cnn_layers.value(l).kernelsize

        valscale1 = bc_cnn_layers.value(l).scale

        valk1 = bc_cnn_layers.value(l).k

        valb1 = bc_cnn_layers.value(l).b

        valnna1 = ArrayBuffer[BDM[Double]]()

        if (type1 =="c"){

          for (j <-0tooutputmap1.toInt-1) {// output map

            // createtemp output map

            varz = BDM.zeros[Double](nn_a(l -1)(0).rows -kernelsize1.toInt + 1, nn_a(l -1)(0).cols -kernelsize1.toInt + 1)

            for (i <-0toinputmaps1.toInt-1) {// input map

              // convolve with corresponding kernel and add to temp outputmap

              // z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j},'valid');

              z = z + convn(nn_a(l -1)(i),k1(i)(j),"valid")

            }

            // add bias, pass through nonlinearity

            // net.layers{l}.a{j} =sigm(z + net.layers{l}.b{j})

           valnna0 = sigm(z +b1(j))

            nna1 +=nna0

          }

          nn_a +=nna1.toArray

          inputmaps1 =outputmap1

        } elseif (type1=="s"){

          for (j <-0toinputmaps1.toInt-1) {

            // z =convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) /(net.layers{l}.scale ^ 2), 'valid'); replace with variable

            // net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 :net.layers{l}.scale : end, :);

            valz = convn(nn_a(l -1)(j), BDM.ones[Double](scale1.toInt,scale1.toInt) / (scale1 *scale1),"valid")

            valzs1 =z(::,0 to -1 byscale1.toInt).t +0.0

            valzs2 =zs1(::,0 to -1 byscale1.toInt).t +0.0

            valnna0 =zs2

            nna1 +=nna0

          }

          nn_a +=nna1.toArray

        }

     }

     // concatenate all end layer feature mapsinto vector

     valnn_fv1= ArrayBuffer[Double]()

     for(j <-0 tonn_a(n -1).length -1) {

        nn_fv1 ++=nn_a(n -1)(j).data

     }

     valnn_fv=newBDM[Double](nn_fv1.length,1,nn_fv1.toArray)

     // feedforward into outputperceptrons

     // net.o =sigm(net.ffW * net.fv +repmat(net.ffb,1, size(net.fv, 2)));

     valnn_o= sigm(bc_cnn_ffW.value *nn_fv + bc_cnn_ffb.value)

     (lable,nn_a.toArray,nn_fv,nn_o)

   }

   train_data2

 } 

(7) CNNbp

后向传播计算。计算每层导数,输出层->隐含层->输入层。计算每一个节点的偏导数。也即误差反向传播。

输入參数:

train_cnnff 前向计算结果

bc_cnn_layers 每层的參数

bc_cnn_ffb 偏置參数

bc_cnn_ffW 权重參数

输出:

每一层的偏导数计算结果。

 /**

  * CNNbp是后向传播

  * 计算权重的平均偏导数

  */

 defCNNbp(

   train_cnnff: RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double],BDM[Double])],

   bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],

   bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],

   bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]):(RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double], BDM[Double],BDM[Double], BDM[Double], BDM[Double], Array[Array[BDM[Double]]])],BDM[Double], BDM[Double], Array[CNNLayers]) = {

   // error : net.e = net.o - y

   valn =bc_cnn_layers.value.length

   valtrain_data3= train_cnnff.map { f =>

     valnn_e= f._4 - f._1

     (f._1, f._2, f._3, f._4,nn_e)

   }

   // backprop deltas

   // 输出层的灵敏度或者残差

   // net.od = net.e .* (net.o .* (1 - net.o))

   // net.fvd = (net.ffW' * net.od)

   valtrain_data4=train_data3.map{ f =>

     valnn_e= f._5

     valnn_o= f._4

     valnn_fv= f._3

     valnn_od=nn_e:* (nn_o:* (1.0-nn_o))

     valnn_fvd=if(bc_cnn_layers.value(n -1).types =="c") {

        // net.fvd = net.fvd .* (net.fv .* (1 - net.fv));

        valnn_fvd1 = bc_cnn_ffW.value.t *nn_od

        valnn_fvd2 =nn_fvd1:* (nn_fv:* (1.0-nn_fv))

        nn_fvd2

     } else{

        valnn_fvd1 = bc_cnn_ffW.value.t *nn_od

        nn_fvd1

     }

     (f._1, f._2, f._3, f._4, f._5,nn_od,nn_fvd)

   }

   // reshape feature vector deltas intooutput map style

   valsa1=train_data4.map(f=> f._2(n -1)(1)).take(1)(0).rows

   valsa2=train_data4.map(f=> f._2(n -1)(1)).take(1)(0).cols

   valsa3=1

   valfvnum=sa1*sa2

 

   valtrain_data5=train_data4.map{ f =>

     valnn_a= f._2

     valnn_fvd= f._7

     valnn_od= f._6

     valnn_fv= f._3

     varnnd=newArray[Array[BDM[Double]]](n)

     valnnd1= ArrayBuffer[BDM[Double]]()

     for(j <-0 tonn_a(n -1).length -1) {

        valtmp1 =nn_fvd((j *fvnum) to ((j +1) *fvnum -1),0)

        valtmp2 =newBDM(sa1,sa2,tmp1.data)

        nnd1 +=tmp2

     }

     nnd(n -1) =nnd1.toArray

     for(l <- (n -2) to0 by -1) {

        valtype1 = bc_cnn_layers.value(l).types

        varnnd2 = ArrayBuffer[BDM[Double]]()

        if (type1 =="c"){

          for (j <-0tonn_a(l).length -1) {

            valtmp_a =nn_a(l)(j)

            valtmp_d =nnd(l +1)(j)

            valtmp_scale = bc_cnn_layers.value(l +1).scale.toInt

            valtmp1 =tmp_a:* (1.0-tmp_a)

            valtmp2 = expand(tmp_d,Array(tmp_scale,tmp_scale))/ (tmp_scale.toDouble*tmp_scale)

            nnd2 += (tmp1 :*tmp2)

          }

        } elseif (type1=="s"){

          for (i <-0tonn_a(l).length -1) {

            varz = BDM.zeros[Double](nn_a(l)(0).rows,nn_a(l)(0).cols)

            for (j <-0tonn_a(l +1).length -1) {

              // z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l +1}.k{i}{j}), 'full');

              z = z + convn(nnd(l +1)(j),Rot90(Rot90(bc_cnn_layers.value(l +1).k(i)(j))),"full")

            }

            nnd2 +=z

          }

        }

        nnd(l) =nnd2.toArray

     }

     (f._1, f._2, f._3, f._4, f._5, f._6, f._7, nnd)

   }

   // dk db calcgradients

   varcnn_layers= bc_cnn_layers.value

   for(l <-1 ton -1) {

     valtype1= bc_cnn_layers.value(l).types

     vallena1=train_data5.map(f=> f._2(l).length).take(1)(0)

     vallena2=train_data5.map(f=> f._2(l -1).length).take(1)(0)

     if(type1=="c"){

        for (j <-0tolena1-1) {

          for (i <-0tolena2-1) {

            valrdd_dk_ij =train_data5.map{ f =>

              valnn_a = f._2

              valnn_d = f._8

              valtmp_d =nn_d(l)(j)

              valtmp_a =nn_a(l -1)(i)

              convn(Rot90(Rot90(tmp_a)),tmp_d,"valid")

            }

            valinitdk = BDM.zeros[Double](rdd_dk_ij.take(1)(0).rows,rdd_dk_ij.take(1)(0).cols)

            val (dk_ij,count_dk)=rdd_dk_ij.treeAggregate((initdk,0L))(

              seqOp = (c, v) => {

                // c: (m, count), v: (m)

                valm1 = c._1

                valm2 =m1 + v

                (m2, c._2 +1)

              },

              combOp = (c1, c2) => {

                // c: (m, count)

                valm1 = c1._1

                valm2 = c2._1

                valm3 =m1 +m2

                (m3, c1._2 + c2._2)

              })

            valdk =dk_ij/count_dk.toDouble

            cnn_layers(l).dk(i)(j) =dk

          }

          valrdd_db_j =train_data5.map{ f =>

            valnn_d = f._8

            valtmp_d =nn_d(l)(j)

            Bsum(tmp_d)

          }

          valdb_j =rdd_db_j.reduce(_+ _)

          valcount_db =rdd_db_j.count

          valdb =db_j/count_db.toDouble

          cnn_layers(l).db(j) =db

        }

     }

   } 

   // net.dffW = net.od * (net.fv)' /size(net.od, 2);

   // net.dffb = mean(net.od, 2);

   valtrain_data6=train_data5.map{ f =>

     valnn_od= f._6

     valnn_fv= f._3

     nn_od*nn_fv.t

   }

   valtrain_data7=train_data5.map{ f =>

     valnn_od= f._6

     nn_od

   }

   valinitffW= BDM.zeros[Double](bc_cnn_ffW.value.rows, bc_cnn_ffW.value.cols)

   val(ffw2,countfffw2)=train_data6.treeAggregate((initffW,0L))(

     seqOp = (c, v) => {

        // c: (m, count), v: (m)

        valm1 = c._1

        valm2 =m1 + v

        (m2, c._2 +1)

     },

     combOp = (c1, c2) => {

        // c: (m, count)

        valm1 = c1._1

        valm2 = c2._1

        valm3 =m1 +m2

        (m3, c1._2 + c2._2)

     })

   valcnn_dffw=ffw2/countfffw2.toDouble

   valinitffb= BDM.zeros[Double](bc_cnn_ffb.value.rows, bc_cnn_ffb.value.cols)

   val(ffb2,countfffb2)=train_data7.treeAggregate((initffb,0L))(

     seqOp = (c, v) => {

        // c: (m, count), v: (m)

        valm1 = c._1

        valm2 =m1 + v

        (m2, c._2 +1)

     },

     combOp = (c1, c2) => {

        // c: (m, count)

        valm1 = c1._1

        valm2 = c2._1

        valm3 =m1 +m2

        (m3, c1._2 + c2._2)

     })

   valcnn_dffb=ffb2/countfffb2.toDouble

   (train_data5,cnn_dffw,cnn_dffb,cnn_layers)

 } 

(8) CNNapplygrads

权重更新。

输入參数:

train_cnnbp:CNNbp输出值

bc_cnn_ffb:神经网络偏置參数

bc_cnn_ffW:神经网络权重參数

alpha:更新的学习率

输出參数:(cnn_ffW, cnn_ffb, cnn_layers)更新后权重參数。

/**

  * NNapplygrads是权重更新

  * 权重更新

  */

 defCNNapplygrads(

   train_cnnbp: (RDD[(BDM[Double], Array[Array[BDM[Double]]], BDM[Double],BDM[Double], BDM[Double], BDM[Double], BDM[Double],Array[Array[BDM[Double]]])], BDM[Double], BDM[Double], Array[CNNLayers]),

   bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],

   bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]],

   alpha: Double): (BDM[Double], BDM[Double], Array[CNNLayers]) = {

   valtrain_data5= train_cnnbp._1

   valcnn_dffw= train_cnnbp._2

   valcnn_dffb= train_cnnbp._3

   varcnn_layers= train_cnnbp._4

   varcnn_ffb= bc_cnn_ffb.value

   varcnn_ffW= bc_cnn_ffW.value

   valn =cnn_layers.length

 

   for(l <-1 ton -1) {

     valtype1=cnn_layers(l).types

     vallena1=train_data5.map(f=> f._2(l).length).take(1)(0)

     vallena2=train_data5.map(f=> f._2(l -1).length).take(1)(0)

     if(type1=="c"){

        for (j <-0tolena1-1) {

          for (ii <-0tolena2-1) {

            cnn_layers(l).k(ii)(j) =cnn_layers(l).k(ii)(j) -cnn_layers(l).dk(ii)(j)

          }

          cnn_layers(l).b(j) =cnn_layers(l).b(j) -cnn_layers(l).db(j)

        }

     }

   }

 

   cnn_ffW=cnn_ffW+cnn_dffw

   cnn_ffb=cnn_ffb+cnn_dffb

   (cnn_ffW,cnn_ffb,cnn_layers)

 } 

(9) CNNeval

误差计算。

 /**

  * nneval是进行前向传播并计算输出误差

  * 计算神经网络中的每一个节点的输出值,并计算平均误差;

  */

 defCNNeval(

   batch_xy1: RDD[(BDM[Double], BDM[Double])],

   bc_cnn_layers: org.apache.spark.broadcast.Broadcast[Array[CNNLayers]],

   bc_cnn_ffb: org.apache.spark.broadcast.Broadcast[BDM[Double]],

   bc_cnn_ffW: org.apache.spark.broadcast.Broadcast[BDM[Double]]): Double ={

   // CNNff是进行前向传播   

   valtrain_cnnff= CNN.CNNff(batch_xy1, bc_cnn_layers, bc_cnn_ffb, bc_cnn_ffW)

   // error and loss

   // 输出误差计算

   valrdd_loss1=train_cnnff.map{ f =>

     valnn_e= f._4 - f._1

     nn_e

   }

   val(loss2,counte)=rdd_loss1.treeAggregate((0.0,0L))(

     seqOp = (c, v) => {

        // c: (e, count), v: (m)

        vale1 = c._1

        vale2 = (v :* v).sum

        valesum =e1 +e2

        (esum, c._2 +1)

     },

     combOp = (c1, c2) => {

        // c: (e, count)

        vale1 = c1._1

        vale2 = c2._1

        valesum =e1 +e2

        (esum, c1._2 + c2._2)

     })

   valLoss= (loss2/counte.toDouble)*0.5

   Loss

 } 

2.2.4 CNNModel解析

(1) CNNModel

CNNModel:存储CNN网络參数,包含:cnn_layers每一层的配置參数,cnn_ffW权重,dbn_b偏置。cnn_ffb偏置。

class CNNModel(

 valcnn_layers:Array[CNNLayers],

 valcnn_ffW:BDM[Double],

  valcnn_ffb: BDM[Double])extends Serializable {

}

(2) predict

predict:依据模型进行预測计算。

 /**

  * 返回预測结果

  *  返回格式:(label, feature, predict_label, error)

  */

 defpredict(dataMatrix: RDD[(BDM[Double], BDM[Double])]): RDD[PredictCNNLabel] = {

   valsc =dataMatrix.sparkContext

   valbc_cnn_layers=sc.broadcast(cnn_layers)

   valbc_cnn_ffW=sc.broadcast(cnn_ffW)

   valbc_cnn_ffb=sc.broadcast(cnn_ffb)

   // CNNff是进行前向传播

   valtrain_cnnff= CNN.CNNff(dataMatrix,bc_cnn_layers,bc_cnn_ffb,bc_cnn_ffW)

   valrdd_predict=train_cnnff.map{ f =>

     vallabel= f._1

     valnna1= f._2(0)(0)

     valnnan= f._4

     valerror= f._4 - f._1

     PredictCNNLabel(label,nna1,nnan,error)

   }

   rdd_predict

 }

(3) Loss

Loss:依据预測结果计算误差。

 /**

  * 计算输出误差

  * 平均误差;

  */

 defLoss(predict: RDD[PredictCNNLabel]): Double = {

   valpredict1= predict.map(f => f.error)

   // error and loss

   // 输出误差计算

   valloss1=predict1

   val(loss2,counte)=loss1.treeAggregate((0.0,0L))(

     seqOp = (c, v) => {

        // c: (e, count), v: (m)

        vale1 = c._1

        vale2 = (v :* v).sum

        valesum =e1 +e2

        (esum, c._2 +1)

     },

     combOp = (c1, c2) => {

        // c: (e, count)

        vale1 = c1._1

        vale2 = c2._1

        valesum =e1 +e2

        (esum, c1._2 + c2._2)

     })

   valLoss= (loss2/counte.toDouble)*0.5

   Loss

 }

转载请注明出处:

http://blog.csdn.net/sunbow0


posted @ 2017-05-18 16:28  yxysuanfa  阅读(833)  评论(0编辑  收藏  举报