摘要:
感谢Blog主要从这里翻译过来:对于技术领域众多的预测工具,决策树是其中比较普遍和容易理解的,而决策树中又以分类树和回归树为主要方法,这边文章主要介绍一下他们的使用条件以及算法上的不同之处。不同点1: 分类树主要用于将数据集分类到响应变量所对应的不同类别里,通常响应变量对应两类0 or 1. 如果目标变量对应了2个以上的类别,则需要使用分类树的一个扩展版C4.5(很popular)。然而对于一个二分类问题,常常使用标准的CART算法。不难看出分类树主要用于响应变量天然对应分类的情况。 回归树主要用于响应变量是数值的或者连续的,例如预测商品的价格,其适用于预测一些非分类的问题。【注意:预测源.. 阅读全文