哈夫变换求平面参数的GPU实现

终于有时间把这篇博客给补上了,理论知识我会在另外一片数学知识中讲到。

写了一个静态的方法,GPU实现的方便并不难(比起来DirectCompute里的复杂配置,amp的确提供了异常方面的接口)。

具体代码见下,我会做一些讲解。

View Code
static void HoughFitPlanGPU(float* pXData, float* pYData, float* pZData, int count, PlanParameters& planParam)
    {
        concurrency::array_view<const float, 1> xdata(count, pXData);
        concurrency::array_view<const float, 1> ydata(count, pYData);
        concurrency::array_view<const float, 1> zdata(count, pZData);

        float miminor = 0.08f;

        int aN = planParam.aN, bN = planParam.bN, cN = planParam.cN, dN = planParam.dN;
        // for the special demand
        float* aParam = new float[aN];
        CreateParam(aParam, aN,  -PI_FIT/4.0f, PI_FIT/4.0f);
        float* bParam = new float[bN];
        CreateParam(bParam, bN,  -PI_FIT/4.0f, PI_FIT/4.0f);

        //std::vector<float> aParam(aN, 1.0);
        //CreateParam(aParam, aN,  -PI_FIT/4.0f, PI_FIT/4.0f);
        //std::vector<float> bParam(bN, 0.5);
        //CreateParam(bParam, bN,  -PI_FIT/4.0f, PI_FIT/4.0f);

        float* dParam = new float[dN];
        for ( int i = 0; i < dN; i++)
            dParam[i] = (float)(i-13);

        concurrency::array_view<float,1> vaParam(aN, aParam);
        concurrency::array_view<float,1> vbParam(bN, bParam);
        concurrency::array_view<float,1> vdParam(dN, dParam);

        std::vector<float> voteRes( aN*bN*dN, 0);
        concurrency::array_view<float, 3> voteData(aN,bN,dN,voteRes); // 特别注意,不能是int型,否则会把shader设置成为int还是怎么,影响到参数空间的值dParam也会变成int值
        voteData.discard_data();


        concurrency::parallel_for_each(
            voteData.extent,
            [=](concurrency::index<3> idx) restrict(amp)
        {
            
            float a = vaParam(idx[0]);
            float b = vbParam(idx[1]);
            float c = 1.0f;
            float d = vdParam[idx[2]];

            voteData[idx] = 0;
            for ( int m = 0; m < count; m++)
            {
                float value = a * xdata[m] + b * ydata[m] + zdata[m] + d;
                value = (value > 0)? value: -value;
                
                if(value < miminor)
                    //voteData[idx] += d;
                    voteData[idx]++;
            }
        }
        );

        float max = 0;
        for ( int i = 0; i < aN; i++)
        {
            for ( int j = 0; j< bN; j++)
            {
                for (int k = 0; k < dN; k++)
                {
                    if(voteData(i,j,k) > max)
                    {
                        max = voteData(i,j,k);
                        planParam.a = aParam[i];
                        planParam.b = bParam[j];
                        planParam.c = 1.0f;
                        planParam.d = dParam[k];
                    }
                }

            }
        }
        max = max;
        std::cout << max << std::endl;
    }

 

在C++ AMP中主要有array和array_view这两种数据容器。这两者主要的区别在于array类型的数据在创建时会在GPU显存上拥有一个备份,在GPU对该数据进行完运算之后,开发者必须手动将数据拷贝回CPU。与之相比,array_view其实是一个数据结构的封装,只有在它指向的数据被GPU调用时才会被拷贝到GPU上进行相应的计算。从下例中我们看到,声明array_view数据时需要提供两个模板参数:array_view元素的类型和数据结构的纬度。因为pXData,pYData和pZData都是一维数组,因此我们在声明时传入const float和1两个参数。其他所遇到的情况以此类推即可。【说明摘自程序员杂志第四期】

参数空间的设计可以根据自己的需求而定,因为在我的试验里,发现在z轴上的分布为40 - 60cm,所以我考虑将z的参数定为单位值,参数空间为a、b、d(点到平面的距离),a、b为-1到1的等差采样,采样率可以根据精度需求进行手动指定(优化选择当然更好,如果要把这个功能集成到现在的项目里可以会考虑做这一步)。

为了和GPU进行检查和对比,实现了CPU进行平面检测,在鉴定GPU效果良好后,对其进行改进,采用了迭代的方法提高检测进度。

View Code
static void HoughFitPlanCPU(float* pXData, float* pYData, float* pZData, int count, PlanParameters& planParam)
    {
        float miminor = 0.01f;

        int aN = planParam.aN, bN = planParam.bN, cN = planParam.cN, dN = planParam.dN;
        // for the special demand
        float band = 2.0f;
        int iter = 6;
        float* aParam = new float[aN];
        float* bParam = new float[bN];
        float* dParam = new float[dN];
        for ( int i = 0; i < dN; i++)
            dParam[i] = (float)(i-13);

        while ( iter-- >0)
        {
            band = band / 2.0f;
            CreateParam(aParam, aN,  planParam.a - band, planParam.a + band);        
            CreateParam(bParam, bN,  planParam.b - band, planParam.b + band);
        

            //std::ofstream outfile("data3.txt");
            float miniset = 10000.0f, dx, dy, dz;
            std::vector<float> voteRes( aN*bN*dN, 0);
            //int*** vote = new int**[dN];
            for ( int i = 0; i < aN; i++)
            {
                //vote[i] = new int*[bN];
                for ( int j = 0; j < bN; j++)
                {
                    //vote[i][j] = new int[dN];
                    for (int k = 0; k < dN; k++)
                    {
                        long idx = i*bN*dN + j*dN + k;
                        float a = aParam[i];
                        float b = bParam[j];
                        float c = 1.0f;
                        float d = dParam[k];
                        float normal = (a*a + b*b + c*c + d*d);
                        //vote[i][j][k] = 0;
                        voteRes[idx] = 0;

                        for (int m = 0; m < count; m++)
                        {
                            float x = pXData[m], y = pYData[m], z = pZData[m];
                            float value = a*x + b*y + c*z + d;
                            value = (value >0)?value:(-value);
                        
                            //value = value*value / 10000.0f;// / (x*x + y*y + z*z)/ normal;
                            if( value < miminor)
                                //voteRes[idx] += d;
                                voteRes[idx]++;
                                //vote[i][j][k]++;
                        }
                        //outfile << vote[i][j][k] <<"\t"; 
                    }
                    //outfile << std::endl;
                }
            }
            //outfile.close();

            float max = -0.01;
            for ( int i = 0; i < aN; i++)
            {
                for ( int j = 0; j < bN; j++)
                {
                    for (int k = 0; k < dN; k++)
                    {
                        long idx = i*bN*dN + j*dN + k;
                        if ( voteRes[idx] > max) //vote[i][j][k] > max)
                        {
                            max = voteRes[idx]; //vote[i][j][k];
                            planParam.a = aParam[i];
                            planParam.b = bParam[j];
                            planParam.d = dParam[k];
                        }
                    }
                }
            }
            std::cout << max << std::endl;
        }
    }

测试代码

View Code
int _tmain(int argc, _TCHAR* argv[])
{
    
    // 0.457x + 0.787y + z - 9 = 0;
    int count = 80, rand_count = 10;
    float* XData = new float[count];
    float* YData = new float[count];
    float* ZData = new float[count];


    for ( int i = 0; i<rand_count; i++)
    {
        ZData[count-1-i] = (float)rand()/1000.0f;
        
        XData[count-1-i] = (float)rand()/1000.0f;
        YData[count-1-i] = (float)rand()/1000.0f;    
    }
    for ( int i = 0; i < count-rand_count; i++)
    {
        ZData[i] = (float)(i+20);
        
        XData[i] = (float)(i*i)/100.0f;

        YData[i] = (9.0f - ZData[i] - 0.457f*XData[i] ) / 0.787f;        
    }
    PlanParameters planParam;
    planParam.c = 1.0f;
    planParam.cN = 1;

    
    planParam.aN = 500;
    planParam.bN = 500;

    CFitLib::HoughFitPlanGPU(XData, YData, ZData,count, planParam);
    std::cout << "GPU:" << planParam.aN << "\t" <<planParam.bN<< "\t" <<planParam.dN << std::endl;
    std::cout << planParam.a << "\t" << planParam.b << "\t" << planParam.c << "\t" << planParam.d << std::endl;

    planParam.a = 0.0f;
    planParam.b = 0.0f;
    planParam.aN = 100;
    planParam.bN = 100;
    CFitLib::HoughFitPlanCPU(XData, YData, ZData, count, planParam);
    std::cout << "CPU:" << planParam.aN << "\t" <<planParam.bN<< "\t" <<planParam.dN  << std::endl;
    std::cout << planParam.a << "\t" << planParam.b << "\t" << planParam.c << "\t" << planParam.d << std::endl;
    
    std::cout << (0.061*178 + 7.41)*0.65 <<std::endl;
    system("pause");
    return 0;
}

CPU递归迭代能找到更好的逼近结果,可考虑换成GPU进行迭代在降低算法复杂度。

【由于这段时间太多,写得很粗糙,请多多见谅】

 

posted @ 2012-12-09 00:17  天堂左岸8023  阅读(543)  评论(0编辑  收藏  举报