java多线程8:阻塞队列与Fork/Join框架

队列(Queue),是一种数据结构。除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的。

BlockingQueue

而阻塞队列BlockingQueue除了继承队列的所有方法外,还分别新增了支持阻塞的插入(put)和移除(take)方法。

 

下面我们分别看下JDK提供的七个阻塞队列

ArrayBlockingQueue

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。

看一下它的构造方法

/**
     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
     * capacity and the specified access policy.
     *
     * @param capacity the capacity of this queue
     * @param fair if {@code true} then queue accesses for threads blocked
     *        on insertion or removal, are processed in FIFO order;
     *        if {@code false} the access order is unspecified.
     * @throws IllegalArgumentException if {@code capacity < 1}
     */
    public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

  默认的构造方法是不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。

非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。为了保证公平性,通常会降低吞吐量。

第15行 lock = new ReentrantLock(fair); 可以看出阻塞队列的公平性也是通过ReentrantLock的公平锁实现的,

第16行和第17行,我们又看到熟悉的 lock.newCondition(),在之前的一篇博客《java多线程6:ReentrantLock 》中,说到使用condition可以实现等待/通知模型,

也不难理解,如果想要实现支持阻塞的插入(put)和移除(take)方法,就可以通过condition实现线程间的通信。

 

LinkedBlockingQueue

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

offer(E e): 如果队列满了,立即返回false,如果队列没满,立即返回true

put(E e):如果队列满了,一直阻塞,直到队列不满了或者线程被中断

offer(E e, long timeout, TimeUnit unit):在队尾插入一个元素,如果队列已满,则进入等待,直到出现以下三种情况:被唤醒、等待时间超时、当前线程被中断 

poll():如果没有元素,直接返回null;如果有元素,出队

take():如果队列有值,返回取出的值,如果队列空了,一直阻塞,直到队列不为空或者线程被中断

poll(long timeout, TimeUnit unit):如果队列不空,出队;如果队列已空且已经超时,返回null;

如果队列已空且时间未超时,则进入等待,直到出现以下三种情况:被唤醒、等待时间超时、当前线程被中断

 

总结:LinkedBlockingQueue是允许两个线程同时在两端进行入队或出队的操作的,但一端同时只能有一个线程进行操作,这是通过两把锁来区分的;

为了维持底部数据的统一,引入了AtomicInteger的一个count变量,表示队列中元素的个数。

count只能在两个地方变化,一个是入队的方法(可以+1),另一个是出队的方法(可以-1),而AtomicInteger是原子安全的,所以也就确保了底层队列的数据同步。 

 

PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。

也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。

需要注意的是不能保证同优先级元素的顺序。

 

DelayQueue

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。

队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

使用场景:

  订单系统,对于30分钟内未支付的订单自动取消

  缓存系统,可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了

  定时任务,使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的

 

SynchronousQueue

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。

/**
     * Creates a {@code SynchronousQueue} with the specified fairness policy.
     *
     * @param fair if true, waiting threads contend in FIFO order for
     *        access; otherwise the order is unspecified.
     */
    public SynchronousQueue(boolean fair) {
        transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
    }

1、公平模式:TransferQueue

采用公平锁,并配合一个FIFO队列(Queue)来管理多余的生产者和消费者

2、非公平模式:TransferStack

采用非公平锁,并配合一个LIFO栈(Stack)来管理多余的生产者和消费者,这也是SynchronousQueue默认的模式

 

LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

(1)transfer方法如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。

如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下。

(2)tryTransfer方法tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。

和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回,而transfer方法是必须等到消费者消费了才返回。

 

LinkedBlockingDeque

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以从队列的两端插入和移出元素。

双向队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,

LinkedBlockingDeque多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,

以First单词结尾的方法,表示插入、获取(peek)或移除双端队列的第一个元素。

以Last单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。

另外,插入方法add等同于addLast,移除方法remove等效于removeFirst。

但是take方法却等同于takeFirst,不知道是不是JDK的bug,使用时还是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以运用在“工作窃取”模式中。

 

 Fork/Join框架

RecursiveAction:用于没有返回结果的任务。

RecursiveTask:用于有返回结果的任务。

我们看一下如何用Fork/Join框架实现计算 1+2+3+...+100

public class CountTask extends RecursiveTask<Integer> {
    // 阈值,设置每个子任务将执行多少计算任务
    private static final int THRESHOLD = 2;
    private int start;
    private int end;

    public CountTask(int start, int end) {
        this.start = start;
        this.end = end;
    }

    /**
     * The main computation performed by this task.
     *
     * @return the result of the computation
     */
    @Override
    protected Integer compute() {
        int sum = 0;
        if (end - start > THRESHOLD) {
            int mid = (start + end) / THRESHOLD;
            CountTask leftTask = new CountTask(start, mid);
            CountTask rightTask = new CountTask(mid + 1, end);
            // 执行子任务
            leftTask.fork();
            rightTask.fork();
            // 获取子任务执行结果
            Integer leftSum = leftTask.join();
            Integer rightSum = rightTask.join();
            sum = leftSum + rightSum;

        } else {
            for (int i = start; i <= end; i++) {
                sum += i;
            }
        }
        return sum;
    }

    public static void main(String[] args) {
        ForkJoinPool forkJoinPool = new ForkJoinPool();
        CountTask countTask = new CountTask(1, 100);

        ForkJoinTask<Integer> submit = forkJoinPool.submit(countTask);

        try {
            System.out.println(submit.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

  ForkJoinTask与一般任务的主要区别在于它需要实现compute方法,在这个方法里,首先需要判断任务是否足够小,如果足够小就直接执行任务。

如果不足够小,就必须分割成两个子任务,每个子任务在调用fork方法时,又会进入compute方法,看看当前子任务是否需要继续分割成子任务,

如果不需要继续分割,则执行当前子任务并返回结果。使用join方法会等待子任务执行完并得到其结果。

 

参考文献

1:《Java并发编程的艺术》

posted @ 2021-12-17 14:24  让我发会呆  阅读(753)  评论(1编辑  收藏  举报